• Title/Summary/Keyword: 염소 이온 침투

Search Result 199, Processing Time 0.026 seconds

Protection for sea-water intrusion by geophysical prospecting & GIS (해수침투 방지를 위한 물리검층과 GIS 활용방안)

  • Han Kyu-Eon;Yi Sang-Sun;Jeong Cha-Youn
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.54-69
    • /
    • 2000
  • There are groundwater trouble by high-salinity yield inducing sea-water intrusion in Cheju Island. It is used groundwater-GIS(Well-lnfo) in the maintenance and management of groundwater in Cheju Island to grasp groundwater trouble area and cause of high-salinity yield. For 16 wells certain to yield high-salinity, we logged specific electrical conductivity(EC) and tried to get hold of freshwater and saltwater relationship. As result of distribution of $Cl^-$ by depth, it is showed up groundwater trouble by high-salinity yield in the east coastal area and the partly north coastal area. The reason of high-salinity groundwater yield are low-groundwater level by the structure of geology and low-hydraulic gradient etc. There is necessity for management to development and use of groundwater in the high-salinity area, special management area.

  • PDF

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

A Fundamental Study on the Characteristics of Concrete with the Substitution Ratio of the Rapidly Cooled Steel Slag (급냉제강슬래그의 대체율에 따른 콘크리트의 특성에 관한 기초적 연구)

  • Kim, Nam-Wook;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.78-87
    • /
    • 2009
  • When the steel slag is utilized to the concrete as the alternative fine aggregate, its use is limited as the concrete aggregate because of expansibility caused by much quantity of free CaO. So, this study is intended to examine the characteristics of the concrete which uses the rapidly cooled steel slag whose content of free CaO is sharply reduced by rapidly cooling the steel slag as the fine aggregate. Accordingly, by comparing and considering the results of the concrete slump loss test with the different substitution ratio and fine aggregate ratio of rapidly cooled steel slag, hydration by XRD and SEM analysis, compressive test by age, a length variation test and rapid chloride ion penetration test, the rapidly cooled steel slag's proper substitution ratio and the fine aggregate ratio was derived.

A Study on the Determination of Construction Depth of Vertical Drain by Cone Resistance (콘 관입저항치를 이용한 수직배수재 타설심도 결정에 관한 연구)

  • Jang, Seo-Yong;Kim, Jong-Ryeol;Shin, Yun-Sup;Ma, Bong-Duk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.163-170
    • /
    • 2006
  • Recently, piezocone penetration test is frequently used in order to estimate the characteristics of soft ground with standard penetration test, generally used in the past. In this study, the correlation of standard penetration test, piezocone penetration test and driving resistance of vertical drain is analyzed in order to increase the confidence for determination of soft ground depth. As the results of each zone, the relation between standard penetration test and piezocone penetration test shows qc=(1.09~1.63)N at the soft ground, determined by 5/30 N value which is decided for soft ground criteria. And qc=(1.21~1.98)N was shown at the point of compressible layer, evaluated by the preconsolidation pressure. And driving resistance of vertical drain is $65{\sim}70kgf/cm^2$ which is equal to $10kgf/cm^2$ of cone penetration resistance.

Evaluation on Performance of Repair Mortar Used for Pre-wetting Spray Method (프리웨팅 스프레이 공법용 모르타르의 성능평가)

  • Nam, Yong-Hyuk;Chung, Young-Jun;Jang, Suk-Hwan;An, Young-Ki;Kim, Sung Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.235-242
    • /
    • 2005
  • This study is on the evaluation of performance of polymer cement mortar which is used for pre-wetting spray method. Pre-wetting spray method is an epoch-making method to repair concrete structures damaged, which is added a small quantity water preciously to dry mortar to reduce dust and rebound and spray mortar mixed with fixed quantity water at nozzle before spray. The result showed that physical performance such like compressive, flexural and adhesive strength of polymer cement mortar, TS 100 used for pre-wetting spray method was superior to other repair mortar. Also durable performance such as resistance on permeability of chloride ion, carbonation, chemical and freezing-thawing was excellent.

Evaluation of Durability Characteristics of High Performance Shotcrete Using Fly Ash (폐석탄회를 이용한 고성능 숏크리트의 내구특성 평가)

  • Park, Cheol-Woo;Lee, Hyeon-Gi;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.305-311
    • /
    • 2010
  • The industrial by-product market has increased at a geometric rate worldwide with the rapid economic growth. At present time, conventional disposal methods of industrial by-products in Korea including landfill, incineration and storage already have reached their limits. In this study, the industrial by-products such as fly ash and silicafume were used as mineral admixtures, which are commonly added to concrete mix to inhance the economic efficiency, long-term strength and durability of concrete, to determine the optimized mix proportion of high performance shotcrete. Through the series of tests (compressive strength test, accelerated chloride ion penetration test, measurement of chloride diffusion coefficient). The results of the study showed that the proposed mix proportions satisfied the requirements of domestic as well as international guidelines for shotcrete, with a higher durability than the existing shotcrete.

Mechanical Properties and Durability of Concrete Incorporating Air-Cooled Slag (서냉슬래그 미분말을 적용한 콘크리트의 역학적 성능 및 내구성 평가)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.356-363
    • /
    • 2017
  • Blast furnace slag(BFS) is a by-product generated during the manufacture of pig ion, and is divided into water-cooled slag(WS) and air-cooled slag(AS) by the coking method of BFS. In this study, concrete specimens with ternary binders were produced at the various replacement levels of cement by AS. Various mechanical properties of concrete, such as compressive and split tensile strengths, absorption and water permeable pore, were measured. In addition, the chloride ions penetration resistance and carbonation resistance were tested to evaluate the durability of concrete incorporating AS. The experimental data indicated that the use of AS up to a maximum of 10% replacement level enhanced the concrete performance. However, a higher replacement of AS exhibited poor mechanical properties and concrete durability.

Effect of Fineness Levels of GGBFS on the Strength and Durability of Concrete (콘크리트의 강도 및 내구성에 대한 고로슬래그미분말 분말도의 영향)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1095-1104
    • /
    • 2014
  • This paper presents the results of experimental work on both strength characteristics and durability of concrete or mortar having 50% ground granulate blastfurnace slag(GBS) with different fineness levels (4,450, 6,000 and $8,000cm^2/g$). Compressive and split tensile strength test results indicated that the concrete with a higher fineness level of GBS exhibited a better strength development due to the acceleration of latent hydraulic property at the later curing stage compared with ordinary portland cement concrete. Meanwhile, it was found that a higher fineness level of GBS showed some negative effects on the resistance against freezing-thawing action. However, incorporation of GBS to concrete, irrespective of fineness levels, significantly enhanced the chloride ions penetration resistance. The resistance against sulfate attack of mortar with GBS was greatly dependent on the attacking sources from sulfate environments.

Enhanced Durability Performance of Rock-Filled-Dam Face-Slab Concrete using Fly Ash and Blended PVA Fiber (플라이애시와 PVA 섬유를 혼입한 댐 표면 차수벽 콘크리트의 내구성능 평가)

  • Woo, Sang-Kyun;Won, Jong-Pil;Bae, Doo-San;Chu, In-Yeop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.140-148
    • /
    • 2016
  • This study examined the durability of face-slab concrete in Concrete-Faced Rock-filled Dams(CFRDs). The durability of face-slab concrete can be improved by optimizing the amount of fly ash in the cement mixture. Durability tests including plastic shrinkage, permeability, abrasion resistance, and repeated freezing and thawing were done on face-slab concrete specimens with different amounts of fly ash and blended PVA(Poly Vinyl Alcohol) fibre. When the effect of the fly ash content on concrete durability was evaluated, the results showed that a 15% fly ash content and 0.1% blended PVA fiber yielded the optimum durability level for concrete-faced rock-filled dams.