• Title/Summary/Keyword: 염소 이온 침투

Search Result 200, Processing Time 0.028 seconds

Studies on the Leaching of the Constituents in Paddy Soil -III. Effects of Rice Straw on the Leaching of the Constituents in Paddy Soil (논 토양성분(土壤成分)의 용탈(溶脫)에 관(關)한 연구(硏究) -III. 논 토양(土壤) 화학성분(化學成分)의 용탈(溶脫)에 미치는 볏짚의 영향(影響))

  • Kim, Kwang-Sik;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.311-317
    • /
    • 1983
  • These studies were carried out to investigate the effects of rice straw on the leaching of chemical constituents in paddy soil. Rice plants were cultured in paddy soil to which rice straw was applied and then chemical properties of percolated water were analysed. The results were as follows. The leaching of calcium and magnesium was affected by rice straw application in the early stages of plant growth and by rice root activity in the late stages. The application of the straw promoted the reduction of the soil followed by increasing the leaching of iron and manganese. The leaching of potassium, ammonium-nitrogen and chloride was not due to the application of rice straw and the leaching of carbon dioxide increased with the application of rice straw, at the same time chemical properties seemed to be affected by rice root activity. Generally, cation and anion leached in the percolated water were equivalent. Calcium, magnesium, Fe as cation and $HCO_3$, $SO_4{^{-2}}$ as anion were important constituents in the percolated water from paddy soil.

  • PDF

Development on Antibiotic Concrete Mixed with Antibacterial Metals and Metallic Salts (금속 및 금속염계 항균제가 혼입된 항균 콘크리트 개발)

  • Choi, Hong-Shik;Heo, Kwon;Lee, Ho-Beom;Lee, Si-Woo;Kwak, Hong-Shin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • In the sewage structures and wastewater facilities, concrete is exposed to hydrogen sulfide ($H_2S$) which acts as an acid material in a solution, and a strongly acidic sulfate ion ($SO{_4}^{-2}$) is generated by a sulfuric bacteria. Hence, a degradation of concrete with biochemical corrosion would be accelerated. Finally, durability of concrete and concrete structures may be greatly reduced. In this study, in order to remove the hydrogen sulfide which is used by the sulfuric bacteria organic-biologically, the antibiotic metal and metallic salt powders were mixed to concrete, and a suppressing performance of the sulfate ion was assessed. For the sulfuric acid bacteria, a comparative evaluation of antimicrobial performance on neutralized concrete specimens were carried out, also by a rapid chloride penetration test, chloride penetration depths and diffusion coefficients were measured for antibiotic concrete in accordance with the amount of metal and metallic salt-based antibacterial agents. Eventually, by an observation of the biochemical state of the surface of concrete specimens exposed outdoors, the performance and applicability of antibiotic concrete were confirmed.

Thermodynamic Modeling of Long-Term Phase Development of Slag Cement in Seawater (해수에 노출된 슬래그 시멘트의 장기 상변이 열역학 모델링)

  • Park, Solmoi;Suh, Yongcheol;Nam, Kwang Hee;Won, Younsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.341-345
    • /
    • 2021
  • Known to improve resistance to chloride ingress, blast furnace slag is a widely used supplementary cementitious material. However, a detailed characterization of cements blended with slag exposed to seawater remains unavailable. This study employs thermodynamic modeling as a toolkit for assessing the long-term phase evolution of slag cement in seawater. The modeling result shows that slag incorporation leads to the formation of phases that are less prone to structural alteration in seawater. Formation of more ettringite is expected to induce expansion in both plain and blended cements, while brucite is unstable in the blended systems. Despite this, the porosity is expected to increase in the blended cements, and aluminate hydrates with a higher chloride binding capacity are more abundant in the blended cements. The results suggest that the use of slag in concrete improves the durability performance of concrete in marine environments.

Experimental Study on the Resistance of Chloride Infiltration of Concrete Using Activated Hwangtoh Admixture (활성황토를 사용한 콘크리트의 염소이온 침투 저항성에 관한 실험적 연구)

  • 이강우;장종호;최희용;구자술;황혜주;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.781-786
    • /
    • 2001
  • The Salt attack is one of the primary factors that cause the deterioration of durability in steel reinforced concrete structure. And to depreciate the deterioration from the Salt attack in concrete structure, pozzolanic materials are used widely in recent years. In this study, experiments about the resistance of chloride infiltration of concrete according to the replacement rations of Activated Hwangtoh and various pozzolanic materials(silica fume, fly ash, blast furnace slag and non Activated/Activated Hwangtoh) are performed and the results of this study were shown as follows; 1) As the replacement ratios of Activated Hwangtoh were getting higher, the strength of concrete was increased and in case of various pozzolanic materials, strength of Activated Hwangtoh in specimen was better than that of fly ash, blast furnace slag and non Activated Hwangtoh. 2) As the replacement ratios of Activated Hwangtoh were getting higher, the resistance of chloride infiltration of concrete was increased and in case of various pozzolanic materials, silica fume is better than any other pozzolanic materials and Activated Hwangtoh was better than that of fly ash, blast furnace slag and non Activated Hwangtoh.

  • PDF

A Study on the Properties of Promoted High Durability Concrete Applied to Coastal Landfill Underground Structures (고내구성 콘크리트(PHDC)의 해안가 매립지 지하구조물의 현장적용 특성에 관한 연구)

  • Kim, Woo-Jae;Khil, Bae-Su;Kim, Do-Su;Kim, Sung-Su;Jung, Sang-Jin;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.153-154
    • /
    • 2009
  • This study examined the field applicability of promoted high durability concrete (PHDC) developed for improving the chloride penetration resistance of coastal landfill underground structures. PHDC was found superior to conventional concrete containing slag in watertightness, crack resistance, and chloride penetration resistance required in coastal landfill underground structures. It was also more workable in field application, and easier to control the quality. This study investigated the strength development, crack resistance, and chloride penetration resistance of PHDC, and performed life evaluation of underground concrete structures of coastal landfill using the Life 365 program.

  • PDF

An Experimental Stuty on Mass Concrete Durability & Hydration Heat Generation Characteristics according to Kinds of Cement & Form (시멘트 및 거푸집 종류에 따른 매스콘크리트의 내구성 및 수화발열특성에 관한 실험적 연구)

  • Kim, Kang-Min;Moon, Sang-Bong;Song, Yong-Soon;Kang, Suck-Hwa;Choi, Sam-Soon;Cho, Yong-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.359-360
    • /
    • 2009
  • This Study is performed Mock-up test accounting for height of placement to review behavior of mass concrete according to kinds of cement & form. First, we measured hydration heat and show a different hydration heat generation characteristics as compared with each other. And we measured mortar outflow, the strength of concrete core and standard specimens, concrete's ability to resist chloride ion penetration in order to durability estimation of concrete. This study was aims to improve quality of mass concrete under marine environment.

  • PDF

An Evaluation on the Chloride Resistance of Concrete Footing at Coastal Area -Comparision of Performance in Korea Building Code(KBC)- (해안인접지역 기초 구조물콘크리트의 내염해 성능 평가 -건축구조기준과의 성능비교-)

  • Park, Yong-Kyu;Yoon, Gi-Won;Kim, Hyun-Woo;Kim, Yong-Ro;Song, Young-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.148-149
    • /
    • 2016
  • In this paper, the increase in chloride resistance of footing concrete at coastal area was evaluated by replacement of Mineral Admixture. In KBC 2009, the footing concrete's minimum specific concrete strength at coastal area is determined to 35MPa. However, this is criteria only based on the strength aspect. Thus, it is not considered to increase the chloride resistance by replacement of Mineral Admixture. According to the test results of chloride ions penetration resistance, 35MPa class concrete with OPC 100% shown inaccessible state. Low-strength (24~30MPa class) concretes with Mineral Admixture, however, presented better performances. In addition, chloride diffusion coefficient tests showed identical appearance. Therefore, the current KBC's chloride resistance criteria based on only concrete strength has to review for the reason it can cause many problems (ex. cost increases by growing concrete strength and the environmental issues by a lot of cement use).

  • PDF

The Resistance of Penetrability and Diffusion of Chloride Ion in Blended Low Heat Type Cement Concrete (저발열형 시멘트 콘크리트의 염소이온 침투$\cdot$확산에 대한 저항성)

  • 문한영;신화철
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 1999
  • Blended Low Heat type cement is ground granulated blast furnace slag and fly ash mixed ternary with ordinary portland cement. From the viewpoint of X-ray patterns of domestic LHC, the main components of cement such as $C_2$S, $C_3$A, $C_3$S are considerably reduced. Therefore the heat evolution of LHC paste is 42cal/g lower than of OPC paste. At early age, the compressive strength development of LHC concrete is delayed, but the slump loss ratio of fresh concrete is reduced more than 20% with elapsed time. The penetrability of LHC is lower than that of OPC by 1/7.8 with the penetrability of chloride ion into the concrete until the age of 120 days. And the PD Index value of LHC is 0.44$\times$10-6 $\textrm{cm}^2$/s, which indicates only 39.3% of OPC. From the Mercury Intrusion Porosimetry test of cement past, we know that the pore size of LHC is more dense than that of OPC by production of C-S-H.

Development of a Successive LCC Model for Marine RC Structures Exposed to Chloride Attack on the Basis of Bayesian Approach (베이지안 기법을 이용한 해양 RC 구조물의 염해에 대한 LCC 모델 개발)

  • Jung, Hyun-Jun;Park, Heung-Min;Kong, Jung-Sik;Zi, Goang-Seup;Kim, Gyu-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.359-366
    • /
    • 2009
  • A new life-cycle cost (LCC) evaluation scheme for marine reinforced concrete structures is proposed. In this method, unlike the conventional life-cycle cost evaluation performed during the design process, the life-cycle cost is updated successively whenever new information of the chloride penetration is available. This updating is performed based on the Bayesian approach. For important structures, information required for this new method can be obtained without any difficulties because it is a common element of various types of monitoring systems. Using the new method, the life-cycle maintenance cost of structures can be estimated with a good precision.

Effect of Impressed Current System for Corrosion Protection of Rebars in Concrete (콘크리트 중의 철근 부식 억제를 위한 외부전원법의 효과)

  • Moon, Han-Young;Kim, Seong-Soo;Kim, Hong-Sam
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.221-230
    • /
    • 1999
  • Corrosion of rebars can occur if there are cracks, moisture and availability of oxygen or carbonation proceeds, chloride penetrates and diffuses in concrete. Once rebars in concrete corrodes, subsequently accompanied with scaling, spalling in concrete cover. As a result of them, the RC structure is seriously deteriorated. In this study, theoretical review and experiments for cathodic protection(CP) have been performed to control corrosion of rebars in concrete contained chlorides and pre-crack. For CP the impressed current system was applied, the protection effect was investigated when rebars was directly contacted with salt water due to crack and open to much chlorides in concrete. In order to investigate the effect of protection, when CP was energized for 1 year, half-cell potential, potential-decay with current density, corrosion ratio, etc. were measured. With the cathodic protection by impressed current system, the depolarized values of all specimen were met NACE Standard, the effect of 34~84% of the ratio of corrosion area and 84~86% of cross-section reduction were calculated.