• Title/Summary/Keyword: 염소접촉조

Search Result 4, Processing Time 0.027 seconds

Study on Methodology for Reducing Dead Zone Flow within Chlorine Contactor Installing Porous Baffles (유공벽을 이용한 우류식 염소접촉조 사류 저감 방안 연구)

  • Park, Hyun-Ho;Park, No-Suk;Cha, Min-Whan;Kim, Sa-Dong;Won, Chan-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.519-525
    • /
    • 2010
  • From the results of tracer test for the existing chlorine contactor in Y water treatment plant, $T_{10}$ and $T_{10}$/T were calculated as 130 min and 0.16, respectively. Therefore it required the modification schemes for improving hydraulic efficiency, surrogated by T10 and $T_{10}$/T, and disinfection performance. In this study, in order to reduce dead zone within contactor, the installation of porous baffles in the near of each corner was suggested and verified using transient CFD(Computational Fluid Dynamics) simulation technique and tracer tests on dynamic condition. From the results of simulation and tracer tests, it was revealed that porous baffles installed have been effective to reduce dead zone within contactor, and increase plug flow fraction.

Case study on Hydraulic characteristics within Chlorine Contactors in Series (염소 접촉조 직렬 연결시 수리흐름 특성에 관한 연구)

  • Kang, Tea-Hun;Chae, Seon-Ha;Kim, Seong-Su;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.497-502
    • /
    • 2011
  • In order to examine the effects of combination of plug flow reactors in series on hydraulic characteristics, comparative tracer tests were conducted for the cases of the existing clear well and clear wells combined in series. From the results of tests, $T_{10}$/T within existing clear well was 0.62~0.68 depending on inlet flowrate, and that in the case of combination in series was 0.69~0.78. While it would be minor improvement in contact efficiency, it would be appropriate to combine two clearwell with pipe in series for expansion.

Examining the effects of wall roughness on the hydraulic characteristics of chlorine contactor using Transient CFD Simulation Technique (벽면 조도계수가 염소 접촉조 수리특성에 미치는 영향 연구)

  • Chae, Seon-Ha;Lim, Young-Taek;Cha, Min-Whan;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.759-765
    • /
    • 2011
  • In this study, in order to investigate the effects of wall roughness on the hydraulic characteristics of chlorine contactor, CFD simulation and tracer tests were conducted for both of reactors whose walls are made of concrete and lined with PE(Poly Ethylene). In the case of walls contacted with water being lined with PE (relatively lower roughness), the flow within reactor is closer to plug flow than that in the case of concrete walls (relatively higher roughness). Especially, the longer tail of C-curve from the results of transient CFD simulation can tell that Morill index in the case concrete walls is much higher than that in the case of walls be lined with lower roughness material.

Evaluation on the Locations of Powdered Activated Carbon Addition for Improvement of Taste and Odor Removal in Drinking Water Supplies (상수원수 내 이취미 제거효율 향상을 위한 분말활성탄 투입지점의 평가)

  • Kim, Young-Il;Lee, Sang-Jin;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.341-348
    • /
    • 2007
  • The efficiency of powdered activated carbon (PAC) for removing taste and odor (T&O) in drinking water supplies is dependent on the contact time, quality of mixing, and the presence of competing compounds. All of these are strongly influenced by the stage in the treatment process at which the PAC is added. In conventional water treatment plants (WTPs), PAC is commonly added into the rapid mixing basin where chemicals such as coagulants, alkaline chemicals, and chlorine, are simultaneously applied. In order to prevent interference between PAC and other water treatment chemicals, alternative locations for addition of PAC, such as at transmission pipe in the water intake tower or into a separated PAC contactor, were investigated. Whatever the location, addition of PAC apart from other water treatment chemicals was more effective for geosmin removal than simultaneous addition. Among several combinations, the sequence 'chlorine-PAC-coagulant' produced the best result with respect to geosmin removal efficiency. Consequently, when PAC has to be applied to cope with T&O problems in conventional WTPs, it is very important to prevent interference with other water treatment chemicals, such as chlorine and coagulant. Adequate contact time should also be given for adsorption of the T&O compounds onto the PAC. To satisfy these conditions, installation of a separated PAC contactor would be the superior alternative if there is space available in the WTP. If necessary, PAC could be added at transmission pipe in the water intake tower and still provide some benefit for T&O treatment.