• Title/Summary/Keyword: 염소소독

Search Result 183, Processing Time 0.027 seconds

Effects of pH, Water Temperature and Chlorine Dosage on the Formation of Disinfection Byproducts at Water Treatment Plant (pH, 수온, 염소주입량이 정수장 소독부산물 생성에 미치는 영향)

  • Lee, Ki-chang;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.505-510
    • /
    • 2015
  • This study investigated formation potential of 16 disinfection byproducts (DBPs) (e.g., g trihalomethanes, haloacetic acids, haloacetonitriles, chloral hydrate, etc.) upon chlorination of raw water at various pH, water temperatures, and chlorine doses. We also compared the DBP formation potential (DBPFP) of raw and filtered waters. Most of DBPs were formed higher at neutral pH, but dichloroacetic acid, chloroform, and bromodichloromethane were formed higher over pH 7. As water temperature increased, concentrations of chloral hydrate, haloacetic acids, and haloacetonitriles linearly increased while that of trihalomethanes exponentially increased. Formation of chloral hydrate, trihalomethanes, and trihaloacetonitriles significantly increased up to 2.0 mg/L $Cl_2$ of chlorine addition, then gradually increased at 2.0~5.6 mg/L $Cl_2$. Filtered water formed less DBPs than raw water in most DBPs except for trihalomethanes.

Effects of Disinfectant Concentration, pH, Temperature, Ammonia, and Suspended Solids on the Chlorine Disinfection of Combined Sewer Overflow (소독제 농도, pH, 온도, 암모니아 농도, 부유물질이 강우 월류수 염소 소독에 미치는 영향)

  • Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.685-690
    • /
    • 2014
  • The treatment of combined sewer overflow (CSO) is one of potential concerns in domestic wastewater treatment in Korea due to the pre-announce of CSO regulations. This work investigated the effects of disinfectant (NaOCl) concentration (0.11 to 4.0 mg $Cl_2/L$), pH (6.5 to 8.0), temperature (15 to $25^{\circ}C$), ammonia (10 to 41 mg N/L), and suspended solids (91 to 271 mg SS/L) on the chlorine disinfection of CSO. The effect of NaOCl concentration on the pseudo-$1^{st}$ order reaction rate for total coliform inactivation was described well with a saturation-type model with the half-velocity constant of 1.212 mg/L. The total coliform inactivation reaction rate decreased with SS and pH, and increased with temperature. Ammonia in the examined range did not affect the disinfection kinetics. A chlorine contact tank with the injection chlorine level of 1 mg $Cl_2/L$ and the hydraulic retention time of 1.25 min is estimated to reduce total coliform from $1{\times}10^5MPN/mL$ to 1,000 MPN/mL at 271 mg SS/L, $15^{\circ}C$, and pH 8.0. Chlorine would be a proper option for the disinfection of CSO.

Development of Optimal Chlorination Model and Parameter Studies (최적 염소 소독 모형의 개발 및 파라미터 연구)

  • Kim, Joonhyun;Ahn, Sooyoung;Park, Minwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.6
    • /
    • pp.403-413
    • /
    • 2020
  • A mathematical model comprised with eight simultaneous quasi-linear partial differential equations was suggested to provide optimal chlorination strategy. Upstream weighted finite element method was employed to construct multidimensional numerical code. The code was verified against measured concentrations in three type of reactors. Boundary conditions and reaction rate were calibrated for the sixteen cases of experimental results to regenerate the measured values. Eight reaction rate coefficients were estimated from the modeling result. The reaction rate coefficients were expressed in terms of pH and temperature. Automatic optimal algorithm was invented to estimate the reaction rate coefficients by minimizing the sum of squares of the numerical errors and combined with the model. In order to minimize the concentration of chlorine and pollutants at the final usage sites, a real-time predictive control system is imperative which can predict the water quality variables from the chlorine disinfection process at the water purification plant to the customer by means of a model and operate the disinfection process according to the influent water quality. This model can be used to build such a system in water treatment plants.

정수지 소독능 진단에 관한 고찰

  • 박승철;이창수
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2004.11a
    • /
    • pp.205-206
    • /
    • 2004
  • 국내 정수처리에 있어 기존 장티프스, 콜레라 등과 같은 병원성 세균의 소독 뿐만아니라 최근에는 지아디아, 크립토스포리디움과 같은 병원성 원생동물의 불활성화에 대하여 많은 관심을 가져야 하며 적정한 소독능을 확보하기 위해서는 정수지의 도류벽 설치, 용량확장, 수위비조절 및 잔류염소 농도 조절 등의 운영 및 시설개선이 필요한 것으로 판단된다.

  • PDF

Effect of Barley Tea on the Reduction of the Tap Water Chlorination By-Products in Top Water and Identification of Maillard Reaction Products in the Extracts of Barley Tea, Corn Tea, and Cassia tora Seed Tea Using GC/MSD (보리차 제조시 수돗물 중 염소소독부산물의 제거 여부 및 보리차.옥수수차.결명차 중 Maillard 반응 생성물 동정)

  • Lee, Soo-Hyung;Kim, He-Kap
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.256-261
    • /
    • 1999
  • This study was conducted to investigate the effect of barley tea with roasted grains and barley tea with a tea bag on the reduction of chlorination by-product(CBP) levels in chlorinated drinking water. Since the concentrations of six volatile compounds of eight CBPs were blow their respective detection limits after 10 minute heating, two nonvolatile CBPs dichloroacetic acid and trichloroacetic acid, and total chlorine were compared between tap water and two kinds of barley tea. No significant differences were observed in the relative changes of the amounts of the above three items, and new peaks which were not found in the original water appeared in the chromatograms of gas chromatograph/electron capture detector(GC/ECD). Thirty three organic compounds were identified in the extracts of barley tea with roasted grains, barley tea with a tea bag, corn tea, and Cassia tora seed tea which were prepared with distilled/deionized water, using gas chromatography/mass selective detection(GC/MSD). Exclusive of fatty acids, most of the compounds were aromatic compounds such as phenols, furans, and pyrroles.

  • PDF

A Study on Formation Pattern of DBPs by Disinfection of Drinking Raw Water (음용 원수의 염소소독에 의한 소독부산물 생성패턴에 관한 연구)

  • Lee, Kang Jin;Hong, Jee Eun;Pyo, Heesoo;Park, Song-Ja;Yoo, Je Kang;Lee, Dae Woon
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.249-260
    • /
    • 2003
  • The disinfection of drinking water to control microbial contaminants results in the formation of secondary chemical contaminants, DBPs (disinfection by-products). It was studied the formation pattern of DBPs in drinking raw water after hypochlorite, chlorine disinfectant, was added in this study. It was determined TOC (total organic carbon), residual chlorine, turbidity and DBPs in raw water from Han-river during 1~14 days. Total DBPs was $101.3ng/m{\ell}$ (789.6 nM) after 7days and THMs (trihalomethanes) are the dominant portion of 69%. HAAs (haloacetic acids) and chloral hydrate were determined 19% and 10% respectively, and HANs (haloacetonitriles), HKs (haloketones) and chloropicrin were analyzed in trace level. Chloroform occupied about 89% in total THMs in concentration of $61.5ng/m{\ell}$, 95% of HANs was DCAN (dichloroacetonitrile) in $0.72ng/m{\ell}$, 50% of HAAs was TCAA (trichloroacetic acid). On the study of relationship in formation among the DBPs, HANs forms with THMs competitively to the point of the concentration of $40ng/m{\ell}$ of THMs. For HAAs, it did not show the prominent tendency. But it was observed that the compounds of large oxidation state are formed at first, and becomes to the compounds of low oxidation states.

Computing the Dosage and Analysing the Effect of Optimal Rechlorination for Adequate Residual Chlorine in Water Distribution System (배.급수관망의 잔류염소 확보를 위한 적정 재염소 주입량 산정 및 효과분석)

  • Kim, Do-Hwan;Lee, Doo-Jin;Kim, Kyoung-Pil;Bae, Chul-Ho;Joo, Hye-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.916-927
    • /
    • 2010
  • In general water treatment process, the disinfection process by chlorine is used to prevent water borne disease and microbial regrowth in water distribution system. Because chlorines were reacted with organic matter, carcinogens such as disinfection by-products (DBPs) were produced in drinking water. Therefore, a suitable injection of chlorine is need to decrease DBPs. Rechlorination in water pipelines or reservoirs are recently increased to secure the residual chlorine in the end of water pipelines. EPANET 2.0 developed by the U.S. Environmental Protection Agency (EPA) is used to compute the optimal chlorine injection in water treatment plant and to predict the dosage of rechlorination into water distribution system. The bulk decay constant ($k_{bulk}$) was drawn by bottle test and the wall decay constant ($k_{wall}$) was derived from using systermatic analysis method for water quality modeling in target region. In order to predict water quality based on hydraulic analysis model, residual chlorine concentration was forecasted in water distribution system. The formation of DBPs such as trihalomethanes (THMs) was verified with chlorine dosage in lab-scale test. The bulk decay constant ($k_{bulk}$) was rapidly decreased with increasing temperature in the early time. In the case of 25 degrees celsius, the bulk decay constant ($k_{bulk}$) decreased over half after 25 hours later. In this study, there were able to calculate about optimal rechlorine dosage and select on profitable sites in the network map.

Changes in Molecular Weight of Dissolved Organic Matter by Photodegradation and their Subsequent Effects on Disinfection By-Product Formation Potential (광분해에 의한 용존 유기물질의 분자량 변화가 소독부산물 생성능에 미치는 영향)

  • Lim, Jung-Hee;Hur, Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.769-775
    • /
    • 2013
  • UV-induced transformations in the characteristics of dissolved organic matter (DOM) and the subsequent effects on the disinfection by-product formation potential (DBPFP) were investigated using the mixtures of the two humic substances with different sources, and two different size fractions of Suwannee River fulvic acid (SRFA). 7 day-photodegradation resulted in the decrease of specific ultraviolet absorbance (SUVA) of the mixtures as well as the specific DBPFP. After the irradiation, however, higher specific DBPFP values were consistently observed at the same range of the SUVA values. This suggests that non UV-absorbing components, generated by the UV-irradiation, may contribute to the formation of DBPs. Two different molecular size fractions of SRFA showed dissimilar responses to photodegradation. The behavior was also influenced by the types of the DBPs generated. Higher levels of trihalomethenes (THMs) were formed per organic carbon for the high molecular fraction compared to the low molecular fraction, whereas no differences were found in the formation of haloacetic acids (HAAs) between the two different size fractions. The formation of the two types of DBPs also differed by the irradiation times. Specific formation potential of THMs consistently increased upon the irradiation, whereas HAAs showed the initial increase followed by the decrease in their specific formation potential.

Generation characteristics of disinfection by-products (DBPs) by chlorination in sewage effluent (하수처리장 방류수의 염소소독부산물 발생 특성)

  • Seo, Hee-Jeong;Kim, Jong-Min;Min, Kyoung-Woo;Kang, Yeoung-Ju;Paik, Kye-Jin;Park, Jong-Tae;Kim, Seong-Jun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.272-276
    • /
    • 2009
  • This study was performed to investigate the disinfection efficiency and the generation characteristics of disinfection by-products (DBPs) in the sewage effluent. In the case of total coliforms, disinfection efficiency higher than 99%, the required contact time was 30 min at chlorine dose of 0.5 mg/L, 20 min at 1.0 mg/L, and 10 min at 1.5 mg/L, respectively. When the sewage effluent was disinfected with chlorine dose of 0.5 mg/L for 10 min, the maximum generation concentration of trihalomethanes (THMs), haloacetonitriles (HANs) and haloacetic acid (HAAs) were $32.2{\mu}g/L$, $2.97{\mu}g/L$, and $16.29{\mu}g/L$, respectively. The concentration of chloroform was $28.4{\mu}g/L$ corresponding to 88.1% of the THMs. The concentration of HANs and HAAs were found to be inconsiderable. The average residual chlorine concentration of sewage effluent was 0.4 mg/L, the generation concentration of THMs was maximum $1.72{\mu}g/L$ and average $2.79{\mu}g/L$. HANs and HAAs were under the detection limit by GC/MSD.