• Title/Summary/Keyword: 열-구조 모델

Search Result 584, Processing Time 0.029 seconds

Free Vibration Analysis based on HSDT of Laminated Composite Plate Structures Using Multi-scale Approach (멀티 스케일 접근 방법에 의한 복합소재 적층 판구조의 HSDT 기반 고유진동 해석)

  • Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.61-71
    • /
    • 2014
  • This study carried out finite element vibration analysis of composite plate structures for construction using multi-scale approaches, which is based on the higher-order theory. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. The FE model is used for studying free vibrations of laminated composite plates for various fiber-volume fractions. In particular, new results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

Fire Loading Analysis of Underground Box Structure with Considering of Concrete Spalling I : Spalling Analysis (박리를 고려한 지하박스구조물의 화재하중해석 I : 박리해석)

  • Lee, Gye-Hee;Choi, Ik-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.477-483
    • /
    • 2007
  • In this study, the numerical fire analysis for temperature distribution and spalling behavior of underground concrete box structures that contained lifelines, such as power cables and communication cables. The temperature field of inner space was assumed based on the fire curve with the thermal gradient obtained from CFD analysis. It was assumed that the spalling behaviors of concrete are occurred when the concrete temperature reached the threshold, as dehydration degree. In this case, the elements correspond to spalling parts were removed and the analysis model were updated. Three fire scenarios were analyzed and the results were showed adequate spalling behavior. The bearing capacities of the box structures would be estimated in the companion paper.

Preliminary Thermal-Hydraulic Analysis of the CANDU Reactor Moderator Tank using the CUPID Code (CUPID 코드를 이용한 CANDU 원자로 칼란드리아 탱크 내부유동 열수력 예비 해석)

  • Choi, Su Ryong;Lee, Jae Ryong;Kim, Hyoung Tae;Yoon, Han Young;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.95-105
    • /
    • 2014
  • The CUPID code has been developed for a transient, three-dimensional, two-phase flow analysis at a component scale. It has been validated against a wide range of two-phase flow experiments. Especially, to assess its applicability to single- and two-phase flow analyses in the Calandria vessel of a CANDU nuclear reactor, it was validated using the experimental data of the 1/4-scaled facility of a Calandria vessel at the STERN laboratory. In this study, a preliminary thermal-hydraulic analysis of the CANDU reactor moderator tank using the CUPID code is carried out, which is based on the results of the previous studies. The complicated internal structure of the Calandria vessel and the inlet nozzle was modeled in a simplified manner by using a porous media approach. One of the most important factors in the analysis was found to be the modeling of the tank inlet nozzle. A calculation with a simple inlet nozzle modeling resulted in thermal stratification by buoyance, leading to a boiling from the top of the Calandria tank. This is not realistic at all and may occur due to the lack of inlet flow momentum. To improve this, a new nozzle modeling was used, which can preserve both mass flow and momentum flow at the inlet nozzle. This resulted in a realistic temperature distribution in the tank. In conclusion, it was shown that the CUPID code is applicable to thermal-hydraulic analysis of the CANDU reactor moderator tank using the cost-effective porous media approach and that the inlet nozzle modeling is very important for the flow analysis in the tank.

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.

Mission based gas turbine engine rotating parts life evaluation (임무를 가지는 가스터빈 엔진 회전부품 피로수명 평가)

  • Kim, Kyung-Heui;Kim, Hyun-Jae;Chen, Seung-Bae;Kim, Dong-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.385-390
    • /
    • 2009
  • The gas turbine engine structures usually are placed on high thermal mechanical stress condition. For general low cycle fatigue evaluation, simple fatigue criterion based on critical plane approach is developed. LCF life of turbine wheel is evaluated with this criterion and process contrived together.

  • PDF

A properties of short circuit current of voltage applied PVDF (전압인가된 PVDF의 단락전류 특성에 관한 연구)

  • 김진식;김두석;이덕출
    • Electrical & Electronic Materials
    • /
    • v.4 no.4
    • /
    • pp.354-360
    • /
    • 1991
  • PVDF는 현재까지 출현된 고분자 재료중 가장 좋은 가능성을 가진 고분자 재료이다. 시료에 일정시간 전압을 인가한 후 전압을 제거하고 시료양면을 단락하였을때 흐르는 단락전류는 일반적으로 인가 전아브이 극성과 반대 방향으로 감소한다. 본 연구에서는 PVDF의 단락전류가 짧은 시간동안 감소하다가 증가한 후 다시 감소하는 특이한 ABNORMAL SHORT CURREUT(Isa)를 규명하기 위하여 인가전압, 시료온도 및 고체 구조를 변화시키면서 단락 전류를 관측하고 PVDF의 열자격 전류특성을 분석하였다. PVDF의 단락전류 특성은 150.deg.C에서는 특이한 단락전류가 흐르지만 150.deg.C이하의 온도에서는 특이한 단락전류가 흐르지 않는다. 이들 실험결과로 부터 특이한 단락 전류 Isa는 시료의 온도가 150.deg.C에서만 나타나고 전계 세기나 결정 구조에는 관계가 없음을 알았다. 그리고 Isa는 쌍극자의 재배향으로 흐르는 정상적인 단락전류 성분과 가동이온이 확산 혹은 드리후트에 의한 단락전류 성분이 중첩되어 관측된다는 모델을 제시할 수 있다.

  • PDF

Study on the Flame Structures of Counter Flow Flames by Using Different Gas Radiation Models (가스 복사 모델에 따른 대향류화염에서의 화염 구조 연구)

  • Park, Won-Hee;Kim, Dong-Hyun;Kim, Tae-Kuk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1493-1498
    • /
    • 2004
  • WSGGM with gray gas regrouping is successfully applied to study the flame structure of counter flow flames including effect of radiative transfer. The statistical narrow band model is used to obtain the benchmark solutions. Results obtained by using the optically thin model are shown to overestimate the emission and to predict the flame structures inadequately especially for optically thick and low stretch rate flames. Computed results by using the WSGGM with 10 gray gases and SNB model show reasonable agreements with each other, and the required calculation time for the WSGGM is acceptable for engineering applications.

  • PDF

Adjusted Gasoline Demand Forecasts: Artificial Neural Networks Approach (보정된 가솔린 수요예측치: 인공신경망적 접근)

  • 염창선
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.77-83
    • /
    • 2002
  • 본 연구에서는 가솔린 시계열 예측전문가들이 수요를 예측하고, 더 나아가 직감적으로 행하고 있는 보정과정을 자동화하기 위해 신경망을 사용한다. 가솔린 수요 예측분야에서 보정을 위해 사용되는 전형적인 판단요소는 정부 에너지 절약 정책, 에너지 산업의 파업, 공휴일 등이 있다. 주요 추세가 순환신경망에 의해 예측되고 이들 판단요소의 효과가 다층신경망에 의해 탐지되어 보정된다. 가솔린 수요에 대한 실험결과는 보정과정을 갖는 예측구조가 하나의 신경망을 사용하는 예측구조 보다 더 나은 예측력을 보였다. 그리고 본 연구에서 제시한 접근방법이 순환신경망이나 ARIMA 모델을 사용하는 것보다 더 나은 결과를 가졌다.

Design and Implementation of University Intergrated Survey System (대학 통합 설문조사 시스템 설계 및 구축)

  • Seo, Jin-Ho;Yang, Hee-June;Jang, Seok-Hyeon;Lee, Won-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.720-722
    • /
    • 2019
  • 학령인구의 감소에 따른 대학 구조개혁에 대한 경쟁력 강화 방안의 일환으로 각 대학에서는 다양한 설문조사 및 만족도 조사를 시행하고 있다. 그러나, 대부분의 대학은 설문조사의 통합 관리체계 및 운영 방법의 효율성 그리고 활용 방법에 대한 고려 없이 업무별, 시스템별, 다양한 인터넷 무료 설문조사 시스템을 사용하고 있어 체계적이고 효율적인 설문 관리가 어렵다. 본 논문에서는 대학 내에서 운영되는 모든 설문조사 업무를 통합 관리할 수 있는 권한 모델을 설계하고, 자료를 체계적으로 저장할 수 있는 구조를 만들어, 축적된 데이터에 대한 시계열분석, 상관분석, 회귀분석이 가능한 시스템을 제안한다. 제안된 시스템은 학교의 설문조사 업무를 효율화하고, 대학에 필요한 다양한 분석 방법을 제공하여 대학의 발전에 기여 할 수 있을 것으로 사료된다.

An Investigation of Fluid Mixing with Direct Vessel Injection (직접용기주입에 따른 유체혼합에 관한 연구)

  • Cha, Jong-Hee;Jun, Hyung-Gil
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.63-77
    • /
    • 1994
  • The objective of this work is to investigate fluid mixing phenomena related to pressurized thermal shock(PTS) in a pressurized water reactor(PWR) vessel downcomer during transient cooldown with direct vessel injection(DVI) using test models. The test model designs were based on ABB Combustion Engineering(C-E) System 80+ reactor geometry. A cold leg small break loss-of-coolant accident(LOCA) md a main steam line teak were selected as the potential PTS events for the C-E System 80+. This work consist of two parts. The first part provides the visualization tests of the fluid mixing between DVI fluid and existing coolant in the downcomer region, and the second part is to compare the results of thermal mixing tests with DVI in the other test model. Row visualization tests with DVI have clarified the physical interaction between DVI fluid and primary coolant during transient cooldown. A significant temperature drop was observed in the downcomer during the tests of a small break LOCA Measured transient temperature profiles agree well with the predictions by the REMIX code for a small break LOCA and with the calculations by the COMMIX-1B code for a steam line break event.

  • PDF