• Title/Summary/Keyword: 열 형광선량계

Search Result 134, Processing Time 0.021 seconds

Evaluation the Output Dose of Linear Accelerator Photon Beams by Blind Test with Dose Characteristics of LiF:Mg,Cu,P TLD (LiF:Mg,Cu,P 열형광선량계의 선량특성을 이용한 눈가림법에 의한 출력선량 평가)

  • Choi, Tae-Jin;Lee, Ho-Joon;Yie, Ji-Won;Oh, Young-Gi;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.308-316
    • /
    • 2009
  • To achieve the accurate evaluation of given absorbed dose from output dose of linear accelerator photon beam through investigate the characteristics of LiF:Mg,Cu,P TLD powder. This experimental TL phosphor is performed with a commercial LiF:Mg,Cu,P powder (Supplied by PTW) and TL reader (LTM, France). The TLD was exposed to 6 MV X rays of linear accelerator photon beam with range 15 to 800 cGy in blind dose at two hospitals. The dose evaluation of TLD was through the experimental algorithms which were dose dependency, dose rate dependency, fading and powder weight dependency. The glow curve has shown the three peaks which are 110, 183 and 232 degrees of heating temperature and the main dosimetric peak showed highest TL response at 232 high temperature. In this experiments, the LiF:Mg,Cu,P phosphor has shown the 2.5 eV of electron trap energy with a second order. This experiments guided the dose evaluation accuracy is within 1% +2.58% of discrepancy. The TLD powder of LiF:Mg,Cu,P was analyzed to dosimetric characterists of electron captured energy and order by glow shape, and dose-TL response curve guided the accuracy within 1.0+2.58% of output dose discrepancy.

  • PDF

ANSI 13.32 말단부 팬템에 의한 열형광말단선량계의 방향의존성 연구

  • 김종수;윤석철;윤여창
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.889-894
    • /
    • 1995
  • 본 연구에서는 ANSI N13.32(1995)에서 제시한 손가락, 손목/발목 기준 팬텀(1)을 설계 제작하여 Teledye사의 말단선량계(finger와 wrist dosimeter)에 대한 방향의존성 실험을 수행하였다. 방사선원으로는 PTB 2차 베타표준선원 $^{204}$Tl(0.24 MeV), $^{90}$ sr/Y(0.8 MeV) 그리고 $^{l37}$ Cs(0.66 MeV) 표준 감마선원을 사용하였으며, 말단선량계로는 LiF Teflon(D-LiF-7-0.13)을 사용하였다. 90$^{\circ}$ 에서 $10^{\circ}$ 까지 20$^{\circ}$ 씩 수직과 수평으로 팬텀을 회전하여 정상각과 비정상각에 대한 상대응답을 제시하였다. 실험결과 90$^{\circ}$에서 모든 선량계는 잘 일치하였다. $^{90}$ Sr/Y은 50$^{\circ}$ 정도에서 다소 방향의존성이 적은 결과를 보였으며, $^{204}$ TI는 20$^{\circ}$에서 최소 13% 정도의 심한 방향의존성이 나타났다. 또한 $^{137}$Cs은 $10^{\circ}$에서도 최대 10.6% 정도의 적은 방향의존성을 나타냈다. 본 실험의 결과로부터 말단선량계는 저에너지와 낮은 투과 방사선[2]에서 심하게 방향의존성이 나타남을 알 수 있었다.

  • PDF

In vivo and in vitro Confirmation of Dose Homogeneity in Total Body Irradiation with Thermoluminescent Dosimeter (인체 및 인형 팬톰에서 전신방사선조사시 열형광선량계(TLD)를 이용한 선량분포 균일성 확인)

  • Chie Eui Kyu;Park Suk Won;Kang Wee-Saing;Kim Il Han
    • Radiation Oncology Journal
    • /
    • v.17 no.4
    • /
    • pp.321-328
    • /
    • 1999
  • Purpose : Total body irradiation (TBI) or whole body irradiation is used to acquire immune suppression, to treat malignant lymphoma and leukemia, and as an conditioning regimen for bone marrow transplantation. For these purposes, many methods were developed to obtain homogenous dose distribution. The objective of this study was to analyze and confirm the accuracy and the homogeneity of the treatment setup, the parallel opposed lateral technique, currently used in Seoul National University Hospital. Materials and Metheods : Surface dose data, measured with a thermoluminescent dosimeter, of 8 patients among 10 patients, who were given total body irradiation with the parallel opposed lateral technique between September 1996 to August 1998, at Seoul National University Hospital were analyzed. Surface doses were measured at the head, neck, axilla, thigh, and ankle level. Surface and midline doses were measured with similar set-up and technique in the Humanoid phantom. Results : Measured surface doses relative to prescribed dose for the head, neck, axilla, thight, and ankle leve were $91.3{\pm}7.8,{\;}98.3{\pm}7.5,{\;}95.1{\pm}6.3,{\;}98.3{\pm}5.5$, and $95.3{\pm} 6.3\%$, respectively. The midline doses of the head, neck, axilla, thigh, and ankle level estimated from the surface-to-midline ratios in the Humanoid Phantom were $103.4{\pm}9.0,{\;}107.8{\pm}10.5,{\;}91.1{\pm}6.1,{\pm} 93.8{\pm}4.5,{\;}and{\;}104.5{\pm}9.3\%$, respectively. Measured surface doses and estimated midline doses ranged from $-8.9\%$ to $+7.8\%$. Midline doses at the neck and the axilia level deviated more than $5\%$ from the prescribed doses. The difference of the estimated midline doses at the neck and the axilla level and the actual doses were attributed to the thickness differences between the Humanoid phantom and the patients. Conclusion Distribution of the midline doses as well as the suface doses were measured to be within $-8.7\~{\pm}7.8\%$ range. Actual dose distribution in the patient is expected to be better than the measured dose range mainly attributed to thickness difference between the patient and the Humanoid phantom.

  • PDF

Design of a Badge Filter System for Measurement of Hp(10) with the New Type of TL Dosimeter $CaSO_4:Dy,P$ (신형 TL 선량계인 $CaSO_4:Dy,P$를 이용한 Hp(10) 측정용 배지의 필터체계 설계)

  • Kim, H.K.;Kwon, J.W.;Lee, J.K.;Kim, J.L.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • This study was intended to estimate Hp(10) recommended by the ICRU using the $CaSO_4:Dy,P$ element developed in the KAERI. For the estimation of Hp(10), TL response should be compensated properly through the energy range using filter materials since $CaSO_4:Dy,P$ is of severe photon energy dependent response. Various experiments and computations using Monte Carlo Code were carried out for designing filter satisfying the performance requirements of the ISO related to TL dosimeter. Under the completed filter, the relative response of $CaSO_4:Dy,P$ showed $0.75{\sim}1.0$ for photons in the range of $20{\sim}662keV$. Especially it was possible to reduce the thickness of front filter and simplify the filter combination with rear filter of larger diameter and to considerably improve angular dependence by introducing taper to the filler.

Measurement of Patient Dose from Computed Tomography Using Physical Anthropomorphic Phantom (물리적 팬텀을 이용한 CT 촬영 환자의 피폭 선량 측정 및 평가)

  • Jang, Ki-Won;Lee, Choon-Sik;Kwon, Jung-Wan;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.113-119
    • /
    • 2005
  • The computed tomogrpahy(CT) provides a high quality in images of human body but contributes to the relatively high patient dose. The frequency of CT examination is increasing and, therefore, the concerns about the patient dose are also increasing. In this study the experimental determination of patient dose was performed by using a physical anthropomorphic phantom and thermoluminescent dosimeter(TLD). The measurements were done for the both axial and spiral scan mode. As a result the effective doses for each scan mode were 17.78mSv and 10.01 mSv respectively and the fact that the degree of the reduction in the patient dose depends on the pitch scan parameter was confirmed. The measurement methods suggested in this study can be applied for the reassessment of the patient dose when the technique in CT equipment is developed or the protocol for CT scanning is changed.

LiF(Mg, Cu, Na, Si) Thermoluminescent Dosimeters for In-phantom Dosimetry of $^{60}Co\;{\gamma}$-rays (LiF(Mg, Cu, Na, Si) 열형광선량계를 사용한 $^{60}Co\;{\gamma}^-$선의 수중 흡수선량 측정)

  • Kim, Hyun-Ja;Chung, Woon-Hyuk;Lee, Woo-Gyo;Doh, Sih-Hong
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 1990
  • Newly developed LiF(Mg, Cu, Na, Si) thermoluminescence phosphors sealed in a plastic capsules (32mm dia., 0.9mm wall thickness) were used for in-phantom dosimetry of $^{60}Co$ $\gamma$-irradiation. The absorbed doses in water were determined by applying the general cavity theory to the absorbed dose in TLD cavity, which was computed from exposure. The absorbed doses at various sites in the water-phantom were measured by LiF(Mg, Cu, Na, Si) TLD and compared with doses obtained by the ionization method. Both results were consistent within the experimental fluctuation$({\pm}3%)$ Central axis percentage depth doses and phantom-air ratios measured by LiF(Mg. Cu, Na, Si) TLD showed good agreement with the published values[Br. J. Radiology, Suppl. 17(1983)].

  • PDF

EFFECTIVE DOSE FROM CONE BEAM CT FOR IMAGING OF MESIODENS (상악 정중과잉치 진단을 위한 cone beam CT의 유효선량)

  • Han, Won-Jeong;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • Purpose : This study was aimed to calculate effective dose from cone beam CT and compare effective dose from periapical and panoramic radiography for mesiodens. Materials and Methods : Upper anteiror periapical, panoramic radiography and cone-beam CT were taken for diagnosis of mesiodens. The effective dose were calculated by using an anthropomorphic phantom loaded with thermoluminescent dosimeters at the 23 sites related to sensitive organs. Results : The highest absorbed doses were received by the mandibular body, parotid gland and cheek from periapical, panoramic and cone-beam CT, respectively. The effective doses for periapical, panoramic radiography and cone-beam CT measured 2, 18 and 48 ${\mu}Sv$. Conclusion : Cone-beam CT, although providing additional diagnostic benefits, exposes patients to higher levels of radiation than conventional periapical and panoramic radiography.

A Study on the Neutron Dosimetry with LiF Thermoluminescent Dosimeters

  • Yoo, Y.S.;Kim, P.S.;Moon, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.191-198
    • /
    • 1975
  • A study was made on the neutron dosimetry in a mixed gamma-neutron field with LiF thermoluminescent dosimeter. In order to estimate the neutron dose in a mixed field, $^{6}$ LiF and $^{7}$ LiF dosimeters were used for fast and thermal neutron doses. The over-all conversion factors for the effects of dosimeter positions were derived for personnel monitoring and the glow curves of the LiF dosimeters for neutron and gamma-ray doses were also analyzed.

  • PDF

Evaluation of Depth Dose and Surface Dose According to Treatment Room Wall Distance (방사선 치료실 벽면 거리에 따른 심부선량과 표층선량 평가)

  • Je, Jae-Yong
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.121-125
    • /
    • 2011
  • This study was intended to evaluate the surface dose and depth dose of according to the distance of the treatment room wall. High energy photon beams from linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. The scattered radiation measured by thermoluminescence dosimeter(TLD). Linear accelerators rotation center of the four walls(X) distance was measured to be 236, 272, 303, and 337 cm. The result of 100 cGy and 200 cGy of 6 MV photon irradiation, surface dose was 0.49, 0.83 mSv at 236 cm of the shortest distance to the wall, In 272 cm 0.41, 0.53 mSv, 303 cm in the 0.28, 0.57 mSv, and 337 cm distance from the wall in the 0.33, 0.76 mSv surface dose respectively. There was remarkable difference in the surface dose among the treatment room wall distance. The results of useful data in relation to stochastic effect for radiation therapy patients.