• Title/Summary/Keyword: 열 저항해석

Search Result 210, Processing Time 0.026 seconds

Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel (터널 내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 발생시 내부온도분포)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.283-290
    • /
    • 2006
  • Concrete has advantages in fire situations as it is non-combustible and has low thermal conductivity. However, concrete that is not designed against fire can experience significant explosive spalling from the build-up of pore pressures and internal tensile stresses when heated. In this study, the performance of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system was evaluated by experimentally and numerically. The fire test was performed in fire resistance(electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von $Stra{\beta}entunneln$) time heating temperature curve, so as to evaluate the temperature distribution with cover thickness of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system. Based on experimental results and numerical analysis, the proper cover thickness of wet-mixed high strength sprayed polymer mortar determined the more than 4cm.

Numerical Heat Transfer Analysis of die Electrowinning Cell in the Pyroprocessing (파이로프로세스 전해제련장치의 열전달 해석)

  • Yoon, Dal-Seong;Paek, Seung-Woo;Kim, Si-Hyung;Kim, Kwang-Rag;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.213-218
    • /
    • 2009
  • Electrowinning process recovers uranium with actinide elements from spent fuels and is a key step in the Pyroprocessing because of proliferation resistance. An analysis of heat transfer of the Electrowinning cell was conducted to develop basic tool for designing engineering-scale Electrowinner. For the calculation of the heat transfer, ANSYS CFX commercial code was adapted. As a result of the calculation, the vertical Heating Zone length had great effect upon temperature of LiCl-KCl eutectic salt. To maintain constant temperature in the salt, the Heating Zone length should be three times longer than the height of the salt. However, the argon and salt temperatures were barely affected by the Cooling Zone length. The temperature under the Cell cover was mainly influenced by the number of the cooling plates. When the cooling plates were installed more than the number of 5, temperature under the cover was maintained below $250^{\circ}C$. These temperature properties had similar tendency toward the temperature of the Cell which was measured from experiments, Simulated heat transfer information from this study could be used to design engineering-scale Electrowinner.

  • PDF

ViscoElastic Continuum Damage (VECD) Finite Element (FE) Analysis on Asphalt Pavements (아스팔트 콘크리트 포장의 선형 점탄성 유한요소해석)

  • Seo, Youngguk;Bak, Chul-Min;Kim, Y. Richard;Im, Jeong-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.809-817
    • /
    • 2008
  • This paper deals with the development of ViscoElastic Continuum Damage Finite Element Program (VECD-FEP++) and its verification with the results from both field and laboratory accelerated pavement tests. Damage characteristics of asphalt concrete mixture have been defined by Schapery's work potential theory, and uniaxial constant crosshead rate tests were carried out to be used for damage model implementation. VECD-FEP++ predictions were compared with strain responses (longitudinal and transverse strains) under moving wheel loads running at different constant speeds. To this end, an asphalt pavement section (A5) of Korea Expressway Corporation Test Road (KECTR) instrumented with strain gauges were loaded with a dump truck. Also, a series of accelerated pavement fatigue tests have been conducted at pavement sections surfaced with four asphalt concrete mixtures (Dense-graded, SBS, Terpolymer, CR-TB). Planar strain responses were in good agreement with field measurements at base layers, whereas strains at both surface and intermediate layers were found different from simulation results due to the complexity of tire-road contact pressures. Finally, fatigue characteristics of four asphalt mixtures were reasonably described with VECD-FEP++.

Trend Analysis of Earthquake Researches in the World (전세계의 지진 연구의 추세 분석)

  • Yun, Sul-Min;Hamm, Se-Yeong;Jeon, Hang-Tak;Cheong, Jae-Yeol
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.76-87
    • /
    • 2021
  • In this study, temporal trend of researches in earthquake with groundwater level, water quality, radon, remote sensing, electrical resistivity, gravity, and geomagnetism was searched from 2001 to 2020, using the journals indexed in Web of Science, and the number of articles published in international journals was counted in relation to the occurrences of earthquakes (≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0). The number of articles shows an increasing trend over the studied period. This is explained by that studies on earthquake precursor and seismic monitoring becomes active in various fields with integrated data analysis through the development of remote sensing technology, progress of measurement equipment, and big data. According to Mann-Kendall and Sen's tests, gravity-related articles exhibit an increasing trend of 1.30 articles/yr, radon-related articles (0.60 articles/yr), groundwater-related articles (0.70 articles/yr), electrical resistivity-related articles (0.25 articles/yr), and remote-sensing-related articles (0.67 articles/yr). By cross-correlation analysis of the number of articles in each field with removing trend effect and the number of earthquakes of ≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0, radon and remote sensing fields exhibit a high cross-correlation with a delay time of one year. In addition, large-scale earthquakes such as the 2004 and 2005 Sumatra earthquake, the 2008 Sichuan earthquake, the 2010 Haiti earthquake, and the 2010 Chile earthquake are estimated to be related with the increase in the number of articles in the corresponding periods.

Prediction of Thermal Behavior of Automotive LNG Fuel Tank (LNG 자동차 연료 탱크의 열적 거동에 대한 예측)

  • NamKoong, Kyu-Won;Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.875-883
    • /
    • 2010
  • The thermal performance of LNG fuel tanks of vehicles is determined by the time for non-venting storage of fuel and the amount of fuel supplied to the engine. In this study, we selected a double-walled vacuum-insulated fuel tank with a volume of 450 liter, and the properties of the fuel contained in it were assumed to be the same as those of the methane($CH_4$). For the increasing the non-venting fuel storage time, we propose the use of shielded penetration pipes in the tank. We compared the storage times of the tank used in our study with those of the conventional fuel tank. Further, the additional heat input required to maintain the fuel pressure necessary for an appropriate fuel supply rate was predicted. For these parameters, we derived a thermodynamic relationship that can be used to estimate the rate of increase in pressure for a known heat input, and we obtained equations for estimating the rate of heat leaked by using the established heat transfer model. From the results of numerical computation, we found the non-venting storage time of the tank with shielded pipes to be 25-30% higher than that of the tank with unshielded pipes. Further, we determined the appropriate operation conditions by taking into consideration the transfer rate of additional heat provided to the fuel tank.

Analysis of Temperature Characteristics on Accelerometer using SOI Structure (SOI 구조 가속도센서의 온도 특성 해석)

  • Son, Mi-Jung;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • One of today's very critical and sensitive accurate accelerometer which can be used higher temperature than $200^{\circ}C$ and corrosive environment, is particularly demanded for automotive engine. Because silicon is a material of large temperature dependent coefficient, and the piezoresistors are isolated with p-n junctions, and its leakage current increase with temperature, the performance of the silicon accelerometer degrades especially after $150^{\circ}C$. In this paper, The temperature characteristic of a accelerometer using silicon on insulator (SOI) structure is studied theoretically, and compared with experimental results. The temperature coefficients of sensitivity and offset voltage (TCS and TCO) are related to some factors such as thermal residual stress, and are expressed numerically. Thermal stress analysis of the accelerometer has also been carried out with the finite-element method(FEM) simulation program ANSYS. TCS of this accelerometer can be reduced to control the impurity concentration of piezoresistors, and TCO is related to factors such as process variation and thermal residual stress on the piezoresistors. In real packaging, The avarage thermal residual stress in the center support structure was estimated at around $3.7{\times}10^4Nm^{-2}^{\circ}C^{-1}$ at sensing resistor. The simulated ${\gamma}_{pT}$ of the center support structure was smaller than one-tenth as compared with that of the surrounding support structure.

  • PDF

Analysis of Fire Intensity According to the Zones Classification in Traditional Market Stores (전통재래시장 상가간의 구역 구분에 따른 화재강도 분석)

  • Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.154-160
    • /
    • 2020
  • This study analyzed the fire intensity according to the zones classification between traditional market stores using FDS software. Modeling was conducted for the Seomoon traditional market district 4 at Daegu, which places combustibles, such as textiles and clothing near the passageway. The first ignition point assumed a short circuit fire situation at the fourth store combustible. The analysis was conducted under similar conditions as the fire situation in 2016. When there was no section wall, the fire spread rapidly through radiation in all directions from the fire-origin point. After 600 seconds, the mall was burnt to the ground. When section walls were present, however, the fire could be restricted inside the compartment. The first intensity of the two analysis conditions was predicted from the total heat energy from 200 seconds (X1) to 600 seconds (X2), where the heat generation rate began to increase rapidly. As a result of installing section walls near the fire point, heat energy generation of approximately 11.12 MW (55.68 %) was delayed. Further analysis of smoke control, according to the section wall arrangement and re-installation facilities, will be needed to study the characteristics of fire in traditional markets comprehensively.

Scale Effect Analysis of LNG Cargo Containment System Using a Thermal Resistance Network Model (열저항 네트워크 모델을 이용한 LNG 화물창 Scale Effect 분석)

  • Hwalong You;Taehoon Kim;Changhyun Kim;Minchang Kim;Myungbae Kim;Yong-Shik Han;Le-Duy Nguyen;Kyungyul Chung;Byung-Il Choi;Kyu Hyung Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.222-230
    • /
    • 2023
  • In the present work, the scale effect on the Boil-Off Rate (BOR) was investigated based on an analytical method to systematically evaluate the thermal performance of a Liquefied Natural Gas (LNG) Cargo Containment System (CCS). A two-dimensional thermal resistance network model was developed to accurately estimate the heat ingress into the CCS from the outside. The analysis was performed for the KC-1 LNG membrane tank under the IGC and USCG design conditions. The ballast compartment of both the LNG tank and cofferdam was divided into six sections and a thermal resistance network model was made for each section. To check the validity of the developed model, the analysis results were compared with those from existing literature. It was shown that the BOR values under the IGC and USCG design conditions were agreed well with previous numerical results with a maximum error of 1.03% and 0.60%, respectively. A SDR, the scale factor of the LNG CCS was introduced and the BOR, air temperature of the ballast compartment, and the surface temperature of the inner hull were obtained to examine the influence of the SDR on the thermal performance. Finally, a correlation for the BOR was proposed, which could be expressed as a simple formula inversely proportional to the SDR. The proposed correlation could be utilized for predicting the BOR of a full-scale LNG tank based on the BOR measurement data of lab-scale model tanks.

Analysis of Shear Flow Dispersion Using Sequential Mixing Model (순차혼합모형에 의한 전단류 분산 해석)

  • Seo, Il-Won;Son, Eun-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.991-995
    • /
    • 2005
  • 본 연구에서는 1차원 이송-분산 과정을 연구하고 전단류 흐름 및 분산거동에 있어 Taylor 이론의 핵심이라 할 수 있는 '종방향 이송과 횡방향 확산의 균형'을 기본 개념으로 하여, 이송과 확산을 분리하여 이 두 과정이 순차적으로 발생한다는 가정에 의거한 순차혼합모형을 제시하였다. 본 모형에서는 가상의 하천을 여러 개의 행과 종방향 거리를 길이가 일정한 구획으로 나누어 연속적인 분산과정을 이산적인 형태로 나타낼 수 있게 하고, 횡방향 유속분포에 따라 각 행에 각기 다른 유속을 할당한다. 오염물질은 하폭방향 선오염원으로 원점에 순간주입되며, 주어진 혼합시간 $t_m$ 동안 각 행의 오염물질들이 각자에 할당된 유속을 따라 진행하고 진행이 끝난 후 횡방향 확산이 순간적으로 이루어진다. 횡방향 확산은 횡방향으로 완전하게 일어남을 가정하여, 횡방향 확산이 끝나면 각 열에서의 농도 평균값이 할당된다. 이러한 혼합시간 $t_m$ 동안의 순차적인 이송-확산 과정이 반복되면서 오염물질의 분산이 일어나며, 농도 분포 그래프를 그릴 수 있게 된다. 순차혼합모형을 가상의 직선하천에 적용하여 종분산계수를 유도하였는데, 본 연구에서 유도된 종분산계순식은 Fischer.가 제안한 식과 유사한 형태로 나타남을 알 수 있었다. 본 모형에서 계산된 농도분포 곡선을 해석해와 비교한 결과,두 곡선이 적절히 일치함을 확인할 수 있었으며 해석해와의 비교를 통해 종분산계수 K가 혼합시간 $t_m$과 선형관계임을 확인할 수 있었다. 수심대하폭비에 따라 각기 다른 유속분포에 적용하여 종분산계수 K가 유속편차강도의 제곱에 비례관계에 있음이 밝힐 수 있었다. 수압은 $4.69kg/cm^2$으로 나타났다. 밸브 개폐도가 $100\%$일 때가 밸브를 $60\%$$80\%$ 개폐시켰을 때보다 $0.3kg/cm^2,\;0.29kg/cm^2$ 낮게 나타나 밸브를 전체 개방 했을 때 관로내의 수압이 상수설계기준에 적합한 수압을 유지함을 알 수 있다. 상수관로 설계 기준에서는 관로내 수압을 $1.5\~4.0kg/cm^2$으로 나타내고 있는데 $6kg/cm^2$보다 과수압을 나타내는 경우가 $100\%$로 밸브를 개방하였을 때보다 $60\%,\;80\%$ 개방하였을 때가 더 빈번히 발생하고 있으므로 대상지역의 밸브 개폐는 $100\%$ 개방하는 것이 선계기준에 적합한 것으로 나타났다. 밸브 개폐에 따른 수압 변화를 모의한 결과 밸브 개폐도를 적절히 유지하여 필요수량의 확보 및 누수방지대책에 활용할 수 있을 것으로 판단된다.8R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$

  • PDF

Estimation of Groundwater Flow Rate into Jikri Tunnel Using Groundwater Fluctuation Data and Modeling (지하수 변동자료와 모델링을 이용한 직리터널의 지하수 유출량 평가)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Nam-Hoon;Kim, Ki-Seok;Jeon, Hang-Tak
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.29-40
    • /
    • 2009
  • In general, understanding groundwater flow in fractured bedrock is critical during tunnel and underground cavern construction. In that case, borehole data may be useful to examine groundwater flow properties of the fractured bedrock from pre-excavation until completion stages, yet sufficient borehole data is not often available to acquire. This study evaluated groundwater discharge rate into Jikri tunnel in Gyeonggi province using hydraulic parameters, groundwater level data in the later stage of tunneling, national groundwater monitoring network data, and electrical resistivity survey data. Groundwater flow rate into the tunnel by means of analytical method was estimated $7.12-74.4\;m^3/day/m$ while the groundwater flow rate was determined as $64.8\;m^3/day/m$ by means of numerical modeling. The estimated values provided by the numerical modeling may be more logical than those of the analytical method because the numerical modeling could take into account spatial variation of hydraulic parameters that was not possible by using the analytical method. Transient modeling for a period of one year from the tunnel completion resulted in the recovery of pre-excavation groundwater level.