• Title/Summary/Keyword: 열회수 증기발생장치

Search Result 5, Processing Time 0.017 seconds

Recovery of Gallium from GaAs Scraps by Thermal Decomposition (GaAs Scrap으로부터 熱分解法에 의한 갈륨 回收)

  • Choi, Young-Yoon;Nam, Chul-Woo;Yu, Yeon-Tae;Kim, Wan-Young
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.28-32
    • /
    • 2005
  • By using thermal decomposition method, the preliminary experiments for recovery of metallic Ga from GaAs scraps produced in the manufacturing of compound semiconductors were carried out in laboratory(200 g/batch) scales. From these results, decomposition appratus with packed tower was constructed in commercial scale(30 kg/batch). The decomposition rate of GaAs increased with raising decomposition temperature, but the yield of Ga decreased over 1000$^{\circ}C. As a result, the optimum decomposition temperature was 1000~1050$^{\circ}C when the pressure of decomposition reactor was 2~2.5${\times}10^{-2} mmHg, and the yield of Ga was about 89 wt.%. The commercial decomposition apparatus was designed with packed tower because the partial pressure of As in vapor state was not reduced even if the temperature of As vapor was decreased. The recovery yield of Ga from GaAs scraps in large scale experiment showed 99%.

STEAM DRUM DESIGN FOR A HRSG BASED ON CFD (수치해석을 이용한 HRSG(Heat Recovery Steam Generator) 증기 드럼 설계)

  • Ahn, J.;Lee, Y.S.;Kim, J.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.67-72
    • /
    • 2011
  • HRSG (Heat Recovery Steam Generator) is a boiler to recover heat from the exhaust gas of an engine and to generate steam for more power generation or process. For the HRSG, water-tube type boiler is commonly adopted to accommodate the working pressure or capacity requirement of the system. The water-tube type boiler has a steam drum to separate steam from the water-steam mixture supplied from the evaporator tube (riser). The drum should be sized properly to separate the steam by the gravity and auxiliary internals, such as a demister, which are installed to filter the steam. To size the steam drum and to estimate the filter efficiency of drum internals, the velocity distribution inside the drum needs to be identified. In the present study, a series of CFD has been conducted to find the velocity distributions inside steam drums for conventional HRSGs and water-tube type industrial boilers. The velocity distributions obtained from the simulation have been normalized and a correlation to predict them has been found. The correlation is applied to the steam drum design by determining a proper position of a demister to show proper separation performance.

Analysis on the Heat Exchange Efficiency of Kraft Recovery Boiler by Nose Arch Structure Using CFD (CFD를 활용한 크래프트 회수보일러 내부 노즈 아치 구조에 따른 열교환 효율 분석)

  • Jang, Yongho;Park, Hyundo;Lim, Kyung pil;Park, Hansin;Kim, Junghwan;Cho, Hyungtae
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.149-156
    • /
    • 2021
  • A kraft recovery boiler produces steam for power generation by the combustion of black liquor from the kraft pulping process. Since saturated steam became superheated in a superheater above the furnace, it is important to increase the heat exchange efficiency for the superheated steam production and power generation. A nose arch at the bottom of the superheater is important for blocking radiation from the furnace which causes corrosion of the superheater. But the nose arch is the main reason for creating a recirculation region and then decreasing the heat exchange efficiency by holding cold flue gas after the heat transfer to saturated steam. In this study, the size of recirculation region and the temperature of flue gas at the outlet were analyzed by the nose arch structure using computational fluid dynamics (CFD). As a result, when the nose arch angle changed from 106.5° (case 1) to 150° (case4), the recirculation region of flue gas decreased and the heat exchange efficiency between the flue gas and the steam increased by 10.3%.

The thermodynamic efficiency characteristics of combined cogeneration system of 120MW (120MW급 열병합 복합발전시스템의 열역학적 효율 특성)

  • Choi, Myoungjin;Kim, Hongjoo;Kim, Byeongheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, acombined cogeneration power plant produced two types of thermal energy and electric or mechanical power in a single process. The performance of each component of the gas turbine-combined cogeneration system was expressed as a function of the fuel consumption of the entire system, and the heat and electricity performance of each component. The entire system consisted of two gas turbines in the upper system, and two heat recovery steam generators (HRSG), a steam turbine, and two district heat exchangers in the lower system. In the gas turbine combined cogeneration system, the performance test after 10,000 hours of operation time, which is subject to an ASME PTC 46 performance test, was carried out by the installation of various experimental facilities. The performance of the overall output and power plant efficiency was also analyzed. Based on the performance test data, the test results were compared to confirm the change in performance. This study performed thermodynamic system analysis of gas turbines, heat recovery steam generators, and steam turbines to obtain the theoretical results. A comparison was made between the theoretical and actual values of the total heat generation value of the entire system and the heat released to the atmosphere, as well as the theoretical and actual efficiencies of the electrical output and thermal output. The test results for the performance characteristics of the gas turbine combined cogeneration power plant were compared with the thermodynamic efficiency characteristics and an error of 0.3% was found.

Basic Study on the IoT Micro Boiler (IoT 마이크로 보일러에 대한 기초 연구)

  • Jang, Sung-Cheol
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • The product to be developed in this study is a heat recovery device which generates steam or hot water at high temperature and high pressure by heating water using exhaust gas from diesel engine, gas engine, gas turbine, etc. as an exhaust gas boiler off heat boiler(EGB) type for ship and power generation. The steam vapor or the created warm water is used as the power source required for the steerage heating and hot water facility or the HFO heating of the ship, and the turbine drive. The principle of waste heat boilers serves to heat water as high temperature exhaust gas with heat pass through the tube of the boiler. The heated water is a structure that is sent to a cabin or turbine device in the form of steam. In this study, the objective of this study is to maximize the efficiency by increasing the heat transfer surface by replacing the tube which is the heat transfer part of EGB with the plate tube.