• Title/Summary/Keyword: 열확산도 분석

Search Result 8, Processing Time 0.024 seconds

Effect of Additional Cu and Natural Aging Treatment on Thermal Diffusivity in the Al-Mg-Si Alloy (Al-Mg-Si 합금에서 Cu 첨가와 자연시효 열처리가 열확산도에 미치는 영향)

  • Kim, Yu-Mi;Choi, Se-Weon
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.528-534
    • /
    • 2021
  • To confirm effects of natural and artificial aging of precipitate on thermal diffusivity and hardness, the studied Al-Mg-Si alloy were manufactured by gravity casting method with 0.6 wt% and 1.0 wt% additional Cu element. The samples were used for measuring thermal diffusivity and hardness. The addition of Cu, promoted by intermediates such as Q'' and θ'' phases, contributing to the improvement of hardness and high-temperature thermal diffusivity. The natural aging decreased the hardness of the Al-Mg-Si-Cu alloys with increasing time, but did not affect the thermal diffusivity.

Thermal diffusivity measurement of W, Mo in laser flash method (레이져 섬광법을 이용한 W, Mo의 열확산계수측정)

  • 이재호;이상현;정우남;최보영
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.78-78
    • /
    • 2003
  • 레이져 플래시법은 고온에서 열물성을 측정하는 수단으로 가장 많이 사용되고 있는 방법으로 알려져 있다. 각종재료의 열전도도를 측정하는 방법들이 많으나 열평형 유지, 고온, 측정시간등의 제약으로 열확산도측정이 간편하고 고온까지 가능하므로 이에 대한 측정법이 일반화되어 있다. 레이져 플레시법은 열확산도를 1초이내 측정가능하고 200$0^{\circ}C$까지 장치구현이 가능하므로 가장 많이 이용되고 있다. 그러나 장치의 검증을 위한 열확산도 표준물질이 필요로 하나 현재 열전도도 기준물질을 이용하여 검증하고 있으나 향후 열확산도 기준물질의 개발이 현재 시급하다. 현재까지 그라파이트를 중심으로한 고열전도도 연구가 진행되고 있으며, 현재 국제기관에 의해 인증된 기준물질이 부족한 실정이다. 본 연구에서는 기준물질로서 가능성을 탐색하고자 이용이 가장 많은 금속을 택하였다. 현재 텅스텐 및 몰리브덴이 고온까지 안정적이므로 두가지 재료를 택하여 실험을 수행하였다. 먼저 상온~1000K온도영역에서 열확산도 측정연구를 수행하였다. 측정된 데이터 값은 TPRC값과 비교하여 10%이내의 오차를 보였으며 고온에서 높은 안정성을 나타냄을 확인할 수 있었다. 아울러 계측시스템의 자동화 및 개량화를 통하여 실험과정에서 발생할 수 있는 오차를 줄였다. 열확산도 해석은 대수법(logarithmic법)과 Parker법을 이용하여 분석하였으며, 레이져에너지 및 시료크기에 따른 영향을 고려하여 여러가지 크기의 시편을 가지고 실험하였다.

  • PDF

Photoacoustic Determination of Thermophysical Properties of Thin Metallic Plates by Using Parameter Estimation (광음향학적 방법에 의한 얇은 금속판의 열물성 측정)

  • 김석원
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.219-226
    • /
    • 1991
  • The phase and the amplitude of the photoacoustic signal were measured as a function of chopping frequency for several kinds of widely used thin metallic plates (stainless steel 304, brass, aluminum and copper) attached to plexiglass backing. The experimental data have been analyzed systematically by parameter estimation technique based on the two-layer model developed from Rosencwaig-Gersho (R-G) theory. Using this analysis, the values of thermal diffusivity and thermal effusivity of the materials have been determined.

  • PDF

Thermal analysis of pentacene for the application of organic TFT (유기 TFT용 pentacene에 대한 열분석에 관한 연구)

  • 이국화;신무환
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.40-40
    • /
    • 2003
  • 일반적으로 액티브 매트릭스 구동용 스위칭 소자의 경우 Turn-on 시간은 프레임 주파수와 게이트 라인의 수에 반비례하므로 LCD의 화면이 대면적으로 갈수록 스위칭 주파수는 증가하고 이는 채널에서의 열적 효과(thermal effect)를 유도하게 된다. 그러므로 전도성 유기물이 LCD용 유기박막트랜지스터(Thin Film Transistor) 등의 부품으로서의 적절성을 판단하기 위하여는 이에 대한 열적 특성에 대한 검증이 필요하게 된다. 따라서 본 연구에서는 유기 TFT의 열설계에 있어서 필수적인 물질변수로 인식되는 열적 특성들을 측정 계산하였으며 이를 소자의 열적 모델링에 적용하였다. 실험물질로는 pentacene을 사용하였으며 열확산도는 레이저 플레쉬법을 이용하여 측정하였다. 별도로 측정된 비열ㆍ밀도 등의 물성특성을 이용하여 상온에서 200 C의 온도범위에서 pentacene의 열전도도를 계산하여 그 결과를 열적으로 해석하였다. 계산결과, pentacene의 열전도도는 상온에서 약 0.0024 W/cm K의 값을 나타내었고, 70 C 까지 증가하여 약 0.0035 W/cm K의 정점을 보인 후에 200 C 에서 약 0.0022 W/cm K의 낮은 값을 나타낼 때까지 계속 감소하였다 아울러 본 연구에서는 실제 소자응용 시 박막으로서의 pentacene의 응용을 고려하여 실제 박막형태에 대한 열전도를 측정하였으며 이를 레이저 플레쉬법으로 측정한 값과 비교ㆍ분석하였다.

  • PDF

EVALUATION OF THERMAL DIFFUSION IN LOWER End PRIMARY MOLAR WITH THERMOGRAPHY AND FINITE ELEMENT ANALYSIS (Thermography와 유한요소분석법을 이용한 하악 제2유구치의 열확산도 평가)

  • Park, Hee-Seung;Kim, Yong-Kee;Kwon, Soon-Won;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.519-528
    • /
    • 2002
  • It is not a rare occasion that certain dental procedures involving tooth reduction being peformed under inadequate water cooling due to a variety of reasons. This situation could possibly inflict the critical insult to the pulpal tissue of indicated tooth. The purpose of this experiment was to study the pattern of diffusion of external heat produced during routine dental procedures into the pulpal tissue. 30 stone blocks containing three lower second primary molars were used for certain restorative procedures and the temperature of the indicated tooth surface was measured by thermography(Inframetrics 600) and further used as a baseline data for the finite element analysis model fabrication designed in order to evaluate the pattern of thermal diffusion. The ranges of highest surface temperature measured from several dental procedures under water cooling and non-water cooling were $30.8^{\circ}C{\sim}43.6^{\circ}C$ and $51.2^{\circ}C{\sim}103.4^{\circ}C$ respectively. Among procedures studied, crown preparation showed the highest value and amalgam removal showed the lowest. Comparisons between data measured under water cooling and non-water cooling conditions have shown the statistically significant difference(p<0.05). All the non-cooling conditions have shown the relatively larger increment of temperature change at the pulp horn area than the cooling conditions. The results of this study strongly indicate that the water coolant is the essential element in restorative procedures for the maintenance of healthy pulp. Further related studies involving more procedures and conditions are recommended.

  • PDF

3-D Analysis of Semiconductor Surface by Using Photoacoustic Microscopy (광음향 현미경법을 이용한 반도체 표면의 3차원적 구조 분석)

  • Lee, Eung-Joo;Choi, Ok-Lim;Lim, Jong-Tae;Kim, Ji-Woong;Choi, Joong-Gill
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.553-560
    • /
    • 2004
  • In this experiment, a three dimensional structure analysis was carried out to examine the surface defects of semiconductor made artificially on known scale. It was investigated the three dimensional imaging according to the sample depth and the thermal diffusivity as well as the carrier transport properties. The thermal diffusivity measurement of the intrinsic GaAs semiconductor was also analyzed by the difference of frequency-dependence photoacoustic signals from the sample surface of different conditions. Thermal properties such as thermal diffusion length or thermal diffusivity of the Si wafer with and without defects on the surface were obtained by interpreting the frequency dependence of the PA signals. As a result, the photoacoustic signal is found to have the dependency on the shape and depth of the defects so that their structure of the defects can be analyzed. This method demonstrates the possibility of the application to the detection of the defects, cracks, and shortage of circuits on surface or sub-surface of the semiconductors and ceramic materials as a nondestructive testing(NDT) and a nondestructive evaluation(NDE) technique.

Overview of Gas Hydrates as a Future Energy Source and Their Physical/Chemical Properties (미래 에너지로서 가스 하이드레이트의 개관 및 물리/화학적 특성)

  • Cha, Minjun;Min, Kyoung-Won
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.670-687
    • /
    • 2018
  • This paper reviews the structures, physical and chemical properties, origins and global distribution, amount of energy resources, production technologies, and environmental impacts of gas hydrates to understand the gas hydrates as future energy sources. Hydrate structures should be studied to clarify the fundamentals of natural gas hydrates, hydrate distributions, and amount of energy sources in hydrates. Phase equilibria, dissociation enthalpy, thermal conductivity, specific heat, thermal diffusivity, and fluid permeability of gas hydrate systems are important parameters for the the efficient recovery of natural gas from hydrate reservoirs. Depressurization, thermal stimulation, inhibitor injection, and chemical exchange methods can be considered as future technologies to recover the energy sources from natural gas hydrates, but so far depressurization is the only method to have been applied in test productions of both onshore and offshore hydrates. Finally, we discuss the hypotheses of environmental impacts of gas hydrates and their contribution to global warming due to hydrate dissociation.

Preparation of Ni-doped Gamma Alumina from Gibbsite and Its Characteristics (깁사이트로부터 니켈피착 감마알루미나의 제조 및 특성)

  • Lee, Hyun;Chung, In-Sung;Park, Hee-Chan
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1158-1164
    • /
    • 1998
  • Aluminium sulfate solution was prepared by sulfuric acid treatment from gibbsite. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was precipitated from aluminium sulfate solution by adding it into ethylalcohol. From XRD analysis as-prepared $Al_2(SO_4)_3$ · $nH_2O$ was confirmed to have mixed-crystalization water(n=18, 16, 12, 6). The average water of crystalization calculated from thermogravimetry(TG) was 14.7. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was thermally decomposed and converted to $Al_2(SO_4)_3$ at $800^{\circ}C$, $\gamma-Al_2O_3$ at $900-1000^{\circ}C$, and $\alpha-Al_2O_3$ at $1200^{\circ}C$. Ni-doped $\gamma-Al_2O_3$, was synthesized from the slurry of as-prepared $\gamma-Al_2O_3$, with the ratio of [Ni]/[Al]=0.5. The reaction conditions of synthesis were determined as initial pH 9.0 and temperature $80^{\circ}C$ The basicity(pH) of slurry was controlled by using urea and $NH_4OH$ solution. Urea was also used for deposition-precipitation. For determining termination of reaction, the data acquisition was performed by oxidation reduction potential(ORP), conductivity and pH value in the process of reaction. Termination of the reaction was decided by observing the reaction steps and rapid decrease in conductivity. On the other hand, BET(Brunauer, Emmett and Teller) and thermal diffusity of Ni- doped $\gamma-Al_2O_3$, with various content of Ni were measured and compared. Thermal stability of Ni- doped $\gamma-Al_2O_3$ at $1250^{\circ}C$ was confirmed from BET and XRD analysis. The surface state of Ni-doped $\gamma-Al_2O_3$ was investigated by X-ray photoelectron spectroscopy(XPS). The binding energy at $Ni2P_{3/2}$ increased with increasing the formation of $NiAl_2O_4$ phase.

  • PDF