• Title/Summary/Keyword: 열화재료모델

Search Result 34, Processing Time 0.028 seconds

A Pulse-Echo Testing Model for Partially Damaged Ultrasonic Transducers (부분 손상을 입은 초음파 탐촉자의 펄스-에코 시험 모델)

  • Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.2
    • /
    • pp.95-108
    • /
    • 1996
  • In ultrasonic testing, flaw signal from which quantitative information on flaws is determined is influenced by 3 factors : (1) the incident wavefield.produced by the transducer, (2) the scattered waves produced by flaws, and (3) the reception of the scattered waves back at the transducer. So even small changes in transducer performance due to aging or unexpected damages can produce the changes in the characteristics of flaw signal and finally the changes in the quantitative information on flaws. Thus a reliable calibration method of transducer performance is desired. Recently, theoretical models for ultrasonic testing have been employed as reference standards for the calibration of transducers which are considered as circular planar piston sources in the most of cases. But this simplification cannot be applied to partially damaged transducer which has lost their symmetry in performance, even not in appearance. Unfortunately there has been no reliable practical model which can be used for the calibration of partially damaged transducers. Here a pulse-echo testing model for partially damaged ultrasonic transducers was developed with experimental verification. The experimental responses agree very well with the theoretical prediction. So we expect that this model can be served as a theoretical reference standards for transducer calibration.

  • PDF

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Numerical Modeling of Residual Behavior of Fire-Damaged Reinforced Concrete Interior Columns (화해를 입은 철근콘크리트 내부기둥의 잔존거동 수치해석 모델)

  • Lee Chadon;Shin Yeong-Soo;Lee Seung-Whan;Lee Chang-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.893-902
    • /
    • 2005
  • Reasonable prediction of residual capacity of fire-damaged reinforced columns is important for both the safety measurement and the rehabilitation of the reinforced concrete structures suffered from exposure to extensive fire. In order to predict the residual behavior of fire-damaged reinforced concrete columns, its predictive model must be able to take into account the amount of heat transferred into the column, the level of deterioration of constituent materials and various column geometries. The numerical model presented in this research includes all these factors. The model has been shown to reasonably predict the residual behavior of fire-damaged columns. Parametric studies were performed using this model for the effects of cover thickness, exposure time to fire and column geometries on the residual behavior of reinforced concrete columns. It was found that serious damage on the residual capacity of column resulted from a longer exposure time to fire but only marginal differences from other factors.

Integral Method of Stability Analysis and Maintenance of Slope (비탈면 안정해석과 유지관리의 통합해석기법)

  • Park, Mincheol;Yoo, Byeongok;Baek, Yong;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.27-35
    • /
    • 2016
  • Even if the various data analyzing methods were suggested to examine the measured slope behaviors, it is difficult to find methods or procedures for connecting the analyzed results of slope stability and measured slope data. This research suggests the analyzing methods combing the stability analysis and measured data based on progressive failure of slope. Slope failure analysis by time degradation were calculated by strength parameters composed of strength reduction coefficients, also which were compared to the measured data according to the variations of safety factor and displacement of slopes. The accumulated displacement curve were shown as 3rd degree polynomials by suggested procedures, which was the same as before researches. The reverse displacement velocity curves were shown as linear function for prediction of brittle slope failures, also they were shown as 3rd degree polynomials for ductile slope failures, which were the same as the suggested equation by Fukuzono (1985) and they were very similar behaviors to the in-situ failure cases.

Impact Factor Analysis of Response Adjustment Factor of PSC Composite Bridge Using Optical Fiber Sensor (광섬유 센서를 이용한 PSC 합성형교의 응답보정계수 영향인자 분석)

  • Kim, Ho Sun;Jang, Hwa Sup;Yang, Dong Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • In general, load carrying capacity, one of the load & resistance capacities in bridges, has more margins than the load carrying capacity evaluated with theoretical methods, unless there are severe damages, defects or material deterioration phenomena that can have a great impact on the behavior of bridges. However, errors have been already included in the current processes of loading tests and structural analysis for measuring load carrying capacity, thus devaluing the reliability of response adjustment factor. Therefore, this study found out the problems of existing electric resistance strain and displacement sensors in sensor suite to solve the problems with sensors and the errors in the appropriateness of structural analysis model, thereby leading to the changes into an optical fiber smart sensor with excellent performance. Besides, the study attempted to ensure the accuracy of response adjustment factor by selecting the optimal models through the interpretation of various structural analysis models.

Damage Evaluation of Track Components for Sleeper Floating Track System in Urban Transit (도시철도 침목플로팅궤도 궤도구성품의 손상평가)

  • Choi, Jung-Youl;Kim, Hak-Seon;Han, Kyung-Sung;Jang, Cheol-Ju;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.387-394
    • /
    • 2019
  • In this study, in order to evaluate the damage and deterioration of the track components of sleeper floating track (STEDEF), the field samples(specimens) were taken from the serviced line over 20 years old, and the track components were visually inspected, and investigated by laboratory tests and finite element analysis. As a result of visual inspection, the damage of the rail pad and fastener was slight, but the rubber boot was worn and torn at the edges of bottom. The resilience pads were clearly examined for thickness reduction and fatigue hardening layer. As a result of spring stiffness test of rail pad and resilience pad, the deterioration of rail pad was insignificant, but the deterioration of resilience pad exceeded design standard value. Therefore resilience pad was directly affected by train passing tonnage. As a result of comparing the deterioration state of the field sample and the numerical analysis result, the stress and displacement concentration position of the finite element model and the damage position of the field sample were coincident.

A Study on the Behaviour of an Earth and Rockfill Dam Due to Reservoir Water (저수변화에 따른 사력댐의 거동 연구)

  • Shin, Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.61-70
    • /
    • 2003
  • The behaviour of an earth and rock-fill dam is complicated due to reservoir water and various materials in zoned dams. Different materials with a wide range of permeability and seasonal variation of reservoir water result in the time dependent post-constructional behaviour. In aged dams it is often required to control water level to keep the dams safe. In this case information on the post-constructional dam behaviour is important. However, present geotechnical knowledge does not fully support the occasion. In this study the post-constructional behaviour of a dam is investigated using coupled finite element models for series of idealized water reservoir cases: impoundment, draw down, seasonal fluctuation with different rising and falling speeds. Numerical results were analysed in respect of geotechnical parameters such as load transfer, hydraulic fracturing potential and stress paths. It is shown that the control of water level is an important factor while operating dams.

Remaining Service Life Prediction of Concrete Structures under Chloride-induced Loads (염해환경하의 콘크리트 구조물의 잔존수명 예측)

  • Song, Ha-Won;Luc, Dao Ngoc The
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1037-1040
    • /
    • 2008
  • In order to predict the remaining life of marine concrete structures under climatic loads, it is necessary to develop an analytical approach to predict the time and space dependent deterioration of concrete structures due to mainly chloride attack up to corrosion initiation and additional deterioration like cracking of cover concrete. This study aims to introduce FEM model for life-time simulation of concrete structures subjected to chloride attack. In order to consider uncertainties in materials as well as environmental parameters for the prediction, Monte Carlo Simulation is integrated in that FEM modeling for reliability-based remaining service life prediction. The paper is organized as follows: firstly general scheme for reliability-based remaining service life of concrete structures is introduced, then the FEM models for chloride penetration, corrosion product expansion and cover cracking are briefly explained, finally an example is demonstrated and the effects of localization of chloride concentration and corrosion product expansion on service life using above model are discussed.

  • PDF

Reliability Based Design of the Automotive Components considering Degradation Properties of Polymeric Materials (열화물성을 고려한 차량용 플라스틱 부품의 신뢰성 기반 설계)

  • Doh, Jaehyeok;Lee, Jongsoo;Ahn, Hyo-Sang;Kim, Sang-Woo;Kim, Seock-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.596-604
    • /
    • 2016
  • In this study, we used a stochastic approach for guaranteeing the reliability and robustness of the performance with regard to the design of polymer components, while taking into consideration the degradation properties and operating conditions in automobiles. Creep and tensile tests were performed for obtaining degradation properties. The Prony series, which described the viscoelastic models, were calculated to use the creep data by the Maxwell fluid model. We obtained the stress data from the frequency response analysis of the polymer components while considering the degradation properties. Limit state functions are generated by using these data. Reliability assessments are conducted under the variation of the degradation properties and area of frequency at peak response. For this study, the input parameters are assumed to be a normal distribution, and the reliability under the yield stress criteria is evaluated by using the Monte Carlo Simulation. As a result, the reliabilities, according to the three types of polymer materials in automotive components, are compared to each other and suggested the applicable possibility of polymeric materials in automobiles.

A Meshless Method Using the Local Partition of Unity for Modeling of Cohesive Cracks (점성균열 모델을 위한 국부단위분할이 적용된 무요소법)

  • Zi, Goangseup;Jung, Jin-kyu;Kim, Byeong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.861-872
    • /
    • 2006
  • The element free Galerkin method is extended by the local partition of unity method to model the cohesive cracks in two dimensional continuum. The shape function of a particle whose domain of influence is completely cut by a crack is enriched by the step enrichment function. If the domain of influence contains a crack tip inside, it is enriched by a branch enrichment function which does not have the LEFM stress singularity. The discrete equations are obtained directly from the standard Galerkin method since the enrichment is only for the displacement field, which satisfies the local partition of unity. Because only particles whose domains of influence are influenced by a crack are enriched, the system matrix is still sparse so that the increase of the computational cost is minimized. The condition for crack growth in dynamic problems is obtained from the material instability; when the acoustic tensor loses the positive definiteness, a cohesive crack is inserted to the point so as to change the continuum to a discontiuum. The crack speed is naturally obtained from the criterion. It is found that this method is more accurate and converges faster than the classical meshless methods which are based on the visibility concept. In this paper, several well-known static and dynamic problems were solved to verify the method.