• Title/Summary/Keyword: 열화상 카메라 온도

Search Result 131, Processing Time 0.03 seconds

Study on the Effect of Emissivity for Estimation of the Surface Temperature from Drone-based Thermal Images (드론 열화상 화소값의 타겟 온도변환을 위한 방사율 영향 분석)

  • Jo, Hyeon Jeong;Lee, Jae Wang;Jung, Na Young;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • Recently interests on the application of thermal cameras have increased with the advance of image analysis technology. Aside from a simple image acquisition, applications such as digital twin and thermal image management systems have gained popularity. To this end, we studied the effect of emissivity on the DN (Digital Number) value in the process of derivation of a relational expression for converting DN to an actual surface temperature. The DN value is a number representing the spectral band value of the thermal image, and is an important element constituting the thermal image data. However, the DN value is not a temperature value indicating the actual surface temperature, but a brightness value indicating high and low heat as brightness, and has a non-linear relationship with the actual surface temperature. The reliable relationship between DN and the actual surface temperature is critical for a thermal image processing. We tested the relationship between the actual surface temperature and the DN value of the thermal image, and then the radiation adjustment was performed to better estimate actual surface temperatures. As a result, the relation graph between the actual surface temperature and the DN value similarly show linear pattern with the relation graph between the radiation-controlled non-contact thermometer and the DN value. And the non-contact temperature after adjusting the emissivity was closer to the actual surface temperature than before adjusting the emissivity.

Method for Measuring Weld Temperature Using an Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 용접부의 온도 측정 방법)

  • Ro, Chan-Seung;Kim, Kyeong-Suk;Chang, Ho-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.299-304
    • /
    • 2014
  • In this paper, a method is tested to measure temperatures in high-temperature welds. Protective glass was installed between an infrared thermal imaging camera and a heat source, and temperature compensation was applied to the measuring instruments. When the temperature of halogen lamps was taken in real-time and measured by the thermal camera, the temperature was found to be almost invariant with the distance between the camera and heat source. The temperature range could be predicted, through correlations with the thickness of the protective glass and the measured distance. This study suggests that the temperature measurement of welds obtained by using an infrared thermal imaging camera is valid, through experimental testing of heat sources.

Development of malfunction diagnostic robot in distribution line using the Infrared Thermal Imaging Camera, CCD Camera (열화상 카메라와 CCD 카메라를 이용한 배전선 고장진단 로봇개발)

  • Han, Sun-Sin;Choi, Jae-Young;Lee, Jang-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.85-86
    • /
    • 2007
  • 본 논문은 기존에 사람의 인력이나 열화상 카메라에 의존하고 있는 배전선 기자재 점검을 사람대신 로봇이 점검 작업을 하고 기존의 열화상 카메라만 사용하는 점검 방법에 CCD 카메라를 추가로 사용하여 열화상 이미지와 실영상을 같이 획득하도록 하여 배전선 점검 작업의 안전성 확보와 고장진단의 결과 값들의 객관성 있고 정확한 데이터를 획득을 할 수 있도록 하였다. 그리고 로봇이 가공지선을 자율주행하면서 발생하는 포스트 간 이동, 가공지선 회피, 가공지선 다 분기와 같은 문제가 발생하게 되는데 이러한 문제점들은 센서 융합 방법을 사용하여 로봇이 가공지선을 원활하게 자율주행을 할 수 있도록 하였다. 그리고 배전선 기자재들의 자연적 현상 때문에 발생하는 기자재의 부식과 열화로 변하게 되는 기자재들의 온도를 열화상 카메라로 분석하여 배전선 기자재들의 불량 기준 온도를 초과하게 되면 열화상 이미지와 CCD 카메라의 실영상 이미지가 자동으로 캡쳐 되고 저장 될 수 있게 하였다. 이러한 모든 동작들은 로봇이 자율주행을 하면서 이루어진다.

  • PDF

A Study on Measuring the Temperature and Revising the Result When Measuring the Temperature of NPP Pipes Using Infrared Thermography (적외선 열화상 기술을 이용한 원자력 배관의 온도측정과 보정에 관한 연구)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Pack, Chan-Joo;Kim, Dong-Soo;Jung, Duk-Woon;Chang, Ho-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.421-426
    • /
    • 2009
  • The emissivity is different because the emitted angle changes according to the position of the infrared thermography camera and object. Because of this, the temperature distribution expressed when measuring the temperature by using the infrared thermography system is not the accuracy temperature. Although the real surface temperature is constant, the temperature measured by using infrared thermography camera have error in accordance with the value of emissivity. In this paper, the temperatures of the round cylindrical object and the flat square object that heated to the equal temperature were measured by infrared thermography camera. The emissivity calibration formula and correction table are made with the affect of the view angle and emission angle form the surface temperature value. The error of measured temperature values are corrected by using the emissivity calibration formula and correction table, and apply to defect detection of the nuclear power plant pipe. From the calibration method, reliability surface temperature values were obtained.

Measurements of Temperature Distribution on Human Body Surface using Multi-Channel Skin Temperature Sensors (다채널 피부온 센서를 이용한 인체표면 온도분포의 측정)

  • 한화택;김민규;박명규;이성수
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.205-209
    • /
    • 2002
  • 인체의 피부온도는 쾌적성과 감성에 크게 영향을 미치며 의류의 개발이나 건축환경의 설계 등에 활용되고 있다. 단순히 몇몇 측정점에서의 피부온도 데이터가 아니라 인체표면에 걸친 온도분포를 파악함으로써 다양한 정보를 이용하여 보다 광범위한 응용분야에 활용될 수 있을 것이다. 현재 인체표면의 온도분포를 측정하기 위하여 대부분 적외선 열화상 카메라를 활용하고 있다 그러나 열화상 카메라는 서미스터 등을 이용한 피부온 센서에 비하여 온도분해능이 떨어지며 특히 의복내의 피부온을 측정하는 것이 불가능하고 노출된 인체표면에 대해서만 측정이 가능하다. 따라서 본 연구에서는 피부온 센서를 이용한 인체표면 온도분포 측정시스템을 개발하기 위하여 각 센서의 위치와 간격, 그리고 인체 곡면을 따라서 보간법에 따라 온도분포 결과에 미치는 영향을 파악하고 적외선 화상 결과와 비교하고자 한다.

  • PDF

Personalized Cooling Management System with Thermal Imaging Camera (열화상 카메라를 적용한 개인 맞춤형 냉각관리 시스템)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.782-785
    • /
    • 2021
  • In this paper, we propose a personalized cooling management system with thermal imaging camera. The proposed equipment uses a thermal imaging camera to control the amount of cold air and the system according to the difference between the user's skin temperature before and after the procedure. When the skin temperature is abnormally low, the cold air supply is cut off to prevent the possibility of a safety accident. It is economical by replacing the skin temperature sensor with a thermal imaging camera temperature measurement, and it can be visualized because the temperature can be checked with the thermal image. In addition, the proposed equipment improves the sensitivity of the sensor that measures the distance to the skin by calculating the focal length by using a dual laser pointer for the safety of a personalized cooling management system to which a thermal imaging camera is applied. In order to evaluate the performance of the proposed equipment, it was tested in an externally accredited testing institute. The first measured temperature range was -100℃~-160℃, indicating a wider temperature range than -150~-160℃(cryo generation/USA), which is the highest level currently used in the field. In addition, the error was measured to be ±3.2%~±3.5%, which showed better results than ±5%(CRYOTOP/China), which is the highest level currently used in the field. The second measured distance accuracy was measured as below ±4.0%, which was superior to ±5%(CRYOTOP/China), which is the highest level currently used in the field. Third, the nitrogen consumption was confirmed to be less than 0.15 L/min at the maximum, which was superior to the highest level of 6 L/min(POLAR BEAR/USA) currently used in the field. Therefore, it was determined that the performance of the personalized cooling management system applied with the thermal imaging camera proposed in this paper was excellent.

A Study on Estimation of Submarine Groundwater Discharge Distribution area using IR camera and Field survey around Jeju island (열화상카메라와 현장조사를 이용한 제주 주변 해역의 해저 용천수 분포 지역 추정 연구)

  • Park, Jae-Moon;Kim, Dae-Hyun;Yang, Sung-Kee;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.861-866
    • /
    • 2015
  • This study was aimed to detect area of Submaine Groundwater Discharged(: SGD) around Jeju island using by remote sensing. Sea Surface Temperature(SST) was identified using IR camera on Unmaned Aerial Vehicle(UAV) at Gimnyeong port in study area. Then SGD location was detected by comparing range of SGD temperature. Generally, range of SGD temperature is distributed 15 to 17 like underground water. The result, SGD location was detected by SST distribution of Gimnyeong port recorded by IR camera in the southwest of study area.

Object and Heat Detection by Isothermal Images (열화상 등온선 기반 객체 구분과 온도 인식에 관한 연구)

  • Lee, Jinseok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.389-392
    • /
    • 2010
  • 기존에 없던 열화상 카메라의 기능에서 온도가 일정 수준 이상인 지점을 여러 지점 표시하는 알고리즘을 추가하였다. 또한 산업 현장뿐만 아니라 이번에 발생한 신종 플루도 감지하기 위해서 열을 통해 사람을 구분하는 방법을 추가하였다.

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.

Image Processing method for photovoltaic module defect analysis system (태양광 모듈 결함 분석 시스템 개발을 위한 Image Processing 방법)

  • Kang, Jong-Min;HwangBo, Seung
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1310-1310
    • /
    • 2015
  • 대단위 태양광 발전소 또는 고층건물에 설치된 태양광 모듈의 결함을 분석하는데 있어 열화상 카메라를 통한 온도로써 태양광 모듈의 결함을 검출하는 방식이 대두되고 있다. 본 논문에서는 열화상 카메라로 얻은 영상을 온도로 표현하는데 필요한 영상처리를 각각의 태양광 모듈들을 셀 단위로 분류하고 해당 셀을 기준으로 행 이미지를 ROI로 잡은 후 이미지 저장을 하는 방법을 제안한다.

  • PDF