• Title/Summary/Keyword: 열형광

Search Result 323, Processing Time 0.03 seconds

Clinical Significance of Enterovirus in Febrile Illness of Young Children (하절기에 발열을 주소로 입원한 3개월 이하의 영아에서 장바이러스 감염)

  • Kwak, Ji-Yeon;Cho, Mi-Hyun;Kim, Sung-Eun;Kang, Suk-Ho;Kim, Mi-Ok;Ma, Sang-Hyuk;Lee, Kyu-Man
    • Pediatric Infection and Vaccine
    • /
    • v.8 no.1
    • /
    • pp.94-100
    • /
    • 2001
  • Purpose : Enterovirus is a common cause of aseptic meningitis and nonspecific febrile illness in young children. During the summer and fall months, enterovirus-infected young children are frequently admitted and evaluated to rule out bacterial sepsis and/or meningitis. The purpose of this study was to evaluate the relationship between nonpolio enterovirus infection and febrile illness in infants under 3 months of age during the summer, fall months by using a stool culture to identify the presence of enterovirus. Methods : Patients included febrile infants under 3 months of age admitted to Masan Fatima Hospital for sepsis evaluation from May 1999 to September 1999. Cultures were performed from stool and Cerebrospinal fluid samples and then were tested for enterovirus infection. Viral isolation and serotype identification were performed by cell culture and immunofluorescent testing. Enteroviruses not typed by immunofluorescent testing were confirmed by reverse transcription-polymerase chain reaction. Results : A total of 44 febrile infants were enrolled; of those, 20(45%) were positive for enterovirus. Two enterovirus culture-positive infants had concomitant urinary tract infection and one had Kawasaki disease. All infants infected with an enterovirus recovered without complications. Serotype of 20 enteroviruses were isolated from stool, 3 of echovirus type 9, 1 of echovirus type 11, 1 Coxsachievirus type B4, 15 of untyped enteroviruses. One untyped enterovirus was isolated in the CSF. Conclusion : Nonpolio enterovirus infections are associated with nonspecific febrile illnesses in infants under 3 months of age.

  • PDF

A Study on the Evaluation of Patient Dose in Interventional Radiology (중재적방사선검사에서 환자 피폭선량에 관한 연구)

  • Park, Hyung-Sin;Lim, Cheong-Hwan;Kang, Byung-Sam;You, In-Gyu;Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.299-308
    • /
    • 2012
  • To perform patient dose surveys in major interventional radiography procedures as a mean of inter-institutional comparison and of establishing reference dose levels with the ultimate goal of optimizing patient doses in the field of interventional radiography. We reviewed international patient dose survey data in the literature and measured patient dose in major interventional radiography procedures (TACE, AVF, PTBD, TFCA, GDC embolization). ESD(Entrance Skin Dose) was measured using TLD chips attached to the patient skin and ED(Effective Dose) was calculated using angiography unit-derived DAP. A survey of patient dose in interventional radiography procedures were also performed with a questionnaire for interventional radiologists and we proposed a guideline for optimizing patient doses in the field of interventional radiology. The patient dose survey data in interventional radiography procedures were very rare in literature compared with those in diagnostic radiography procedures. In TACE, the mean ED was 25.43 mSv and the mean ESD was 511.75 mGy. The mean ED of TACE was not high, but the cumulative dose should be checked, due to longer procedure TACE. In TFCA, the mean ED was 22.6 mSv and it was relatively high compared with data of other countries. In GDC embolization, the mean ED was not available, because GDC embolization was performed with old Image-Intensifier-type unit and there has no unit-installed ionization chamber. Also, the mean ESD of GDC embolization was up to 2,264 mGy and further studies are needed to calculate the net ED of GDC embolization. Patient dose occurred during interventional radiography procedures are high related with the difficulty of the procedure, fluoroscopy time, the number of angiographies and the treatment protocol. Therefore, continuous education and efforts should be made to optimize the patient dose in the field of interventional radiology.

A Study of Injection Dose for Patients and Exposure Dose for Technologists from the PET/CT Systems (PET/CT 장비 특성에 따른 방사성 의약품 주입량이 방사선 종사자에게 미치는 영향)

  • Park, Hoon-Hee;Oh, Ki-Beak;Lee, Seung-Jae;Bhan, Young-Kag;Kang, Chun-Goo;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Purpose: It appears the different value when the injection dose is calculating for patients on each PET/CT systems. It directly affects the technologists' radiation exposed dose. We studied the effect of the variable injection doses from several PET/CT systems to exposure dose for technologists. Materials and Methods: Six technologists have worked for 5 months through unit rotations with 3 PET/CT systems {Scanner 1 (S1): 0.15 mCi/kg, Scanner 2 (S2): 0.17 mCi/kg, Scanner 3 (S3): 0.12 mCi/kg}. Eighteen to 19 patients have had examinations per a day on each PET/CT systems. Examination parameters were adjusted to the same. TLDs were used for checking the exposure dose of technologists. Results: Each technologists' the monthly average exposure dose was as follows; S1: 0.76 mSv, S2: 0.93 mSv, S3: 0.47 mSv. The maximum exposure dose was 1.12 mSv, and minimum was 0.42 mSv. The results showed significance in the correlation between the PET/CT system and the exposure dose (p<0.005). Conclusion: When the amount of injection dose was small, the exposure dose was decreased not only the patients but also the technologists. The exposure dose was decreased by the individual proficiency of technologists. However, the low injection dose can highly reduce the exposure dose for technologist so that there will be needed to following studies.

  • PDF

Usefulness of wearing pocket dosimeter in nuclear medicine (핵의학 영상검사에서 Pocket dosimeter 착용의 유용성 평가)

  • Kim, Young-Bin;Lee, Eun-Ji;Kim, Kun-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.25-28
    • /
    • 2011
  • Purpose: The aim of study is to find accuracy of pocket dosimeter in measuring exposed dose in compared with survey meter and to compare exposed dose according as Nuclear medicine exams. Materials and Method: First, radiation dose to point source(185 MBq,370 MBq, ${\ldots}$, 1665 MBq, 1850 MBq) were measured in using a pocket dosimeter and a survey meter. Second, radiation dose to 12 patients injected $^{18}F$-FDG 370 MBq were measured in using a pocket dosimeter and a survey meter. Third, radiation dose to 10 patients injected $^{99m}Tc$-DPD 925 MBq were measured in using a pocket dosimeter and a surveymeter. Result: The average is $70.12{\pm}39.36{\mu}Sv/h$ in measurement of point source with Surveymeter and $5{\pm}3.06{\mu}Sv$ in measurement of point source with Pocket dosimeter. The average is $25.04{\pm}6.16{\mu}Sv/h$ in measurement of PET/CT patients with Surveymeter and $2.41{\pm}0.51{\mu}Sv$ in measurement of PET/CT with Pocket dosimeter. The average is $8.58{\pm}0.96{\mu}Sv/h$ in measurement of Bone Scan patients with Surveymeter and $1{\mu}Sv$ in measurement of Bone Scan patients with Pocket dosimeter. Significant difference found between Survey meter value and Pocket dosimeter value in all experimentation (p<0.001). Conclusion: Accoring to rusult Wearing Pocket dosimeter is usefulnee in manerage of exposed dose in nucler medicine exams.

  • PDF

Shielding Effect of Radiation Protector for Interventional Procedure (중재적 방사선 분야 방호용구 차폐효과)

  • Ko, Shin-Kwan;Kang, Byung-Sam;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.213-219
    • /
    • 2007
  • The purpose of this study is to evaluate shielding effect of radiation protector for interventional radiologists in procedures by measuring inside and outside of radiation protector. In this study, we measured the radiation dose of 4 interventional radiologists during TACE and PTBD procedure for 4 month(2005.05-2005.09). Absorbed dose were measured by TLD placed underneath and over radiation protector such as Goggle, Thyroid protector, Apron and placed on the 4th finger of Hand. In addition, we measured background radiation dose in the control room using TLD. During TACE procedure, using 0.07 mmPb Goggle decreased average 53.8% of radiation dose rate in continuous fluoroscopic mode and decreased average 77.6% of radiation dose rate in pulse fluoroscopic mode. Using 0.5 mmPb Thyroid protector decreased average 88.9% of radiation dose rate in continuous fluoroscopic mode and decreased average 92.8% in pulse fluoroscopic mode. During PTBD procedure, using 0.07 mmPb Goggle decreased radiation dose rate average 62.7%, 87.9% by 0.5 mmPb Thyroid protector, 90.5% by 0.5 mmPb Apron. The average fluoroscopic time of PTBD was 6.14 min. shorter than TACE procedure, but radiation exposure dose rate of PTBD was 3 times higher in total body dose, and 40 times higher in hand dose rate than TACE. Interventional radiologists must wear thicker protector recommended over 0.5 mmPb. Also, they must use lead Goggle during interventional procedure. Abdomen dose decreased average 38.4% by drawing a lead curtain under the patient's table, therefore, they must draw a lead curtain to shield scattering ray. Radiation exposure dose decreased average 59.0% by using pulse fluoroscopic mode. So radiologists would better use pulse fluoroscopic mode than continuous fluoroscopic mode to decrease exposure dose.

  • PDF

Quantitative Assessment of the Radiation Exposure during Pathologic Process in the Sentinel Iymph Node Biopsy using Radioactive Colloid (방사성 콜로이드를 이용한 감시림프절 생검 병리처리과정에서 방사선 피폭의 정량적 평가)

  • Song, Yoo-Sung;Lee, Jeong-Won;Lee, Ho-Young;Kim, Seok-Ki;Kang, Keon-Wook;Kook, Myeong-Cherl;Park, Weon-Seo;Lee, Geon-Kook;Hong, Eun-Kyung;Lee, Eun-Sook
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.4
    • /
    • pp.309-316
    • /
    • 2007
  • Purpose: Sentinel lymph node biopsy became the standard procedure in early breast cancer surgery. Faculty members might be exposed to a trace amount of radiation. The aim of this study is to quantify the radiation exposure and verify the safety of the procedure and the facilities, especially during pathologic process. Materials and Methods: Sentinel lymph node biopsies with Tc-99m human serum albumin were performed as routine clinical work. Exposed radiation doses were measured in pathologic technologist, nuclear medicine technologist, and nuclear medicine physician using a thermoluminescence dosimeter (TLD) during one month. We also measured the residual radioactivities or absorbed dose rates, the exposure distance and time during procedure, the radiation dose of the waste and the ambient equivalent dose of the pathology laboratory. Results: Actual exposed doses were 0.21 and 0.85 (uSv/study) for the whole body and hand of pathology technologist after 47 sentinel node pathologic preparations were performed. Whole body exposed doses of nuclear medicine physician and technologist were 0.2 and 2.3 (uSv/study). According to this data and the exposure threshold of the general population (1 mSv), at least 1100 studies were allowed in pathology technologist. The calculated exposed dose rates (${\mu}$ Sv/study) from residual radioactivities data were 2.47/ 22.4 ${\mu}$ Sv (whole body/hand) for the surgeon; 0.22/ 0 ${\mu}$ Sv for operation nurse. The ambient equivalent dose of the pathology laboratory was 0.02-0.03 mR/hr. The radiation dose of the waste was less than 100 Bq/g and nearly was not detected. Conclusion: Pathologic procedure relating sentinel lymph node biopsy using radioactive colloid is safe in terms of the radiation safety.(Nucl Med Mol Imaging 2007;41(4);309-316)

Evaluation of the dose of 16-MDCT and 64-MDCT in case of Coronary Artery CT Angiography using Thermoluminescence Dosimeter (열형광선량계를 이용한 16-MDCT와 64-MDCT의 관상동맥 CT 혈관조영술 시 선량평가)

  • Kim, Sang-Tae;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.336-343
    • /
    • 2010
  • Coronary artery CT angiography has short scanning length, the exposure dose is high. Therefore, it is required to study on the organ dose when using MDCT. We compared the differences between the absorbed dose and effective dose in the major organs assessing the absorbed dose in the major organs by 16-MDCT and 64-MDCT in the subjects with coronary artery CT angiography, the same protocol by 16-MDCT and 64-MDCT. As a result, the great orders of absorbed dose when conducting coronary artery CT angiography had been shown as heart, stomach, liver, pancreas, kidney, spleen, large intestine, lung, small intestine, thyroid gland, ovary, bladder, and orbit with the absorbed dose distribution of $0.538{\pm}0.026(Mean{\pm}SD,\;p<0.05)mGy{\sim}71.316{\pm}4.316mGy$ in 16-MDCT, and heart, stomach, pancreas, spleen, liver, kidney, small intestine, large intestine, lung, thyroid gland, ovary, bladder, and orbit with the absorbed dose distribution of $0.87{\pm}0.01mGy{\sim}115.26{\pm}1.59mGy$ in 64-MDCT, demonstrating some different distributions. The exposed doses to the patient per one time scanning with coronary artery CT angiography were $71.316{\pm}4.316mGy$ in 16-MDCT as the absorbed dose based on the heart and $115.26{\pm}1.59mGy$ in 64-MDCT. The effective doses were 7.41 mSv and 12.11 mSv in 16 and 64-MDCT, respectively. Taking into account the results of brain CT with 2.8 mSv that has comparatively large scanning length and size, facial CT 0.8 mSv, chest CT 5.7 mSv, pelvic CT 7.2 mSv, and abdominal and pelvic CT 14.4 mSv, it is very high considering the scanning length of 13 cm limited to the heart for the scanning range.

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF

Experimental Study with Respect to Dose Characteristic of Glass Dosimeter for Low-Energy by Using Internal Detector of Piranha 657 (Piranha 657의 Internal Detector를 이용한 저에너지에서 유리선량계의 선량 특성에 관한 연구)

  • Son, Jin-Hyun;Min, Jung-Whan;Kim, Hyun-Soo;Lyu, Kwang-Yeul;Lim, Hyun-Soo;Kim, Jung-Min;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.119-124
    • /
    • 2012
  • Recently, Glass Dosimeter (GD) with thermoluminescent Dosimeter (TLD) are comprehensively used to measure absorbed dose from diagnostic field to therapy field that means from low energy field to high energy field. However, such studies about dose characteristics of GD, such as reproducibility and energy dependency, are mostly results in high energy field. Because characteristic study for measurement devices of radiation dose and radiation detector is performed using 137Cs and 60Co which emit high energy radiations. Thus, this study was evaluated the linearity according to Piranha dose which measured by changing tube voltage (50kV, 80kV and 100kV which are low energy radiations), reproducibility and reproducibility according to delay time using GD. Measurement of radiation dose is performed using internal detector of Piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Condition of measurement was 25mA, 0.02sec, 2.5mAs, SSD of 100 cm and exposure area with $10{\times}10cm^2$. As above method, GD was exposed to radiation. Sixty GDs were divided into three groups (50kV, 80kV, 100kV), then measured. In this study, GD was indicated the linearity in low energy field as high energy existing reported results. The reproducibility and reproducibility according to delay time were acceptable. In this study, we could know that GD can be used to not only measure the high energy field but also low energy field.

Radiation Dose of Lens and Thyroid in Linac-based Radiosurgery in Humanoid Phantom (선형가속기형 방사선수술시 인형 팬텀에서 수정체 및 갑상선 선량)

  • Kim, Dae-Yong;Kim, Il-Han
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.517-529
    • /
    • 1998
  • Purpose : Although many studies have investigated the dosimetric aspects of stereotactic radiosurgery in terms of target volume, the absorbed doses at extracranial sites: especially the lens or thyroid - which are sensitive to radiation for deterministic or stochastic effect -have infrequently been reported. The aim of this study is to evaluate what effects the parameters of radiosurgery have on the absorbed doses of the lens and thyroid in patients treated by stereotactic radiosurgery, using a systematic plan in a humanoid phantom. Materials and Methods : Six isocenters were selected and radiosurgery was planned using the stereotactic radiosurgery system which the Department of Therapeutic Radiology at Seoul National University College of Medicine developed. The experimental radiosurgery plan consisted of 6 arc planes per one isocenter, 100 degrees for each arc range and an accessory collimator diameter size of 2 cm. After 250 cGy of irradiation from each arc, the doses absorbed at the lens and thyroid were measured by thermoluminescence dosimetry. Results : The lens dose was 0.23$\pm$0.08$\%$ of the maximum dose for each isocenter when the exit beam did not pass through the lens and was 0.76$\pm$0.12$\%$ of the maximum dose for each isocenter when the exit beam passed through the lens. The thyroid dose was 0.18$\pm$0.05$\%$ of the maximum dose for each isocenter when the exit beam did not pass through the thyroid and was 0.41$\pm$0.04$\%$ of the maximum dose for each isocenter when the exit beam Passed through the thyroid. The passing of the exit beam is the most significant factor of organ dose and the absorbed dose by an arc crossing organ decides 80$\%$ of the total dose. The absorbed doses of the lens and thyroid were larger as the isocenter sites and arc planes were closer to each organ. There were no differences in the doses at the surface and 5 mm depth from the surface in the eyelid and thyroid areas. Conclusion : As the isocenter and arc plane were placed closer to the lens and thyroid, the doses increased. Whether the exit beams passed through the lens or thyroid greatly influenced the lens and thyroid dose. The surface dose of the lens and thyroid consistently represent the tissue dose. Even when the exit beam passes through the lens and thyroid, the doses are less than 1$\%$ of the maximum dose and therefore, are too low to evoke late complications, but nevertheless, we should try to minimize the thyroid dose in children, whenever possible.

  • PDF