• Title/Summary/Keyword: 열해석모델

Search Result 73, Processing Time 0.024 seconds

The Correlation of Thermal Analysis Model using Results of LEO Satellite Optical Payload's Thermal Vacuum Test (저궤도위성 광학탑재체의 열진공시험 결과를 이용한 열해석 모델 보정)

  • Kim, Min-Jae;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.620-621
    • /
    • 2010
  • Thermal models are made to verify the process that operate in space orbit. In this study, thermal analysis model correlation was performed to satisfy the criteria of correlation. Ground thermal vacuum test results are used for the correlation thermal model in the process of thermal model verification.

  • PDF

Thermal Vacuum Test of the Phase Change Material Thermal Control Unit Loaded on the Satellite Flight Model and Thermal Model Correlation with Test Results (위성에 탑재된 상변화물질 열제어장치 비행모델의 열진공시험 및 이를 통한 열해석 모델 보정)

  • Cho, Yeon;Kim, Taig Young;Seo, Joung-Ki;Jang, Tae Seong;Park, Hong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.729-737
    • /
    • 2022
  • Melting and icing process of the PCMTCU(Phase Change Material Thermal Control Unit) installed on the NEXTSat-2, which is scheduled to be launched in the second half, was investigated through the results of satellite-level TVT(Thermal Vacuum Test). As a result of the test, it was confirmed that the latent heat of PCM contributes to the temperature stabilization of the heating components. The thermal model for numerical analysis of the PCMTCU was correlated to acquire a reasonable degree of accuracy using the collected temperature measurements during TVT. The periodic temperature variation of the PCMTCU in normal on-orbit operation was predicted with the correlated thermal model, and the quantitative contribution of the PCM on the thermal energy management was evaluated with the liquid fraction. It will receive flight telemetry from the NEXTSat-2 after the launch, and complete the space verification of the PCMTCU.

Thermal Vacuum Test and Thermal Analysis for a Qualification Model of Cube-satellite STEP Cube Lab. (큐브위성 STEP Cube Lab.의 임무 탑재체 인증모델의 열진공시험 및 열모델 보정을 통한 궤도 열해석)

  • Kang, Soo-Jin;Ha, Heon-Woo;Han, Sung-Hyun;Seo, Joung-Ki;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.156-164
    • /
    • 2016
  • Qualification model(QM) of main payloads including concentrating photovoltaic system using fresnel lens, heating wire cutting type shockless holding and release mechanism, and MEMS-based solid propellant thruster have been developed for the STEP Cube Lab.(Cube Laboratory for Space Technology Experimental Project), which is a pico-class satellite for verification of core space technologies. In this study, we have verified structural safety and functionality of the developed payloads under a qualification temperature range through the QM thermal vacuum test. Additionally, a reliability of thermal model of the payloads has been confirmed by performing a thermal correlation based on the thermal balance test results.

A STUDY ON THERMAL MODEL REDUCTION ALGORITHM FOR SATELLITE PANEL (인공위성 패널 열해석모델 간소화 알고리즘 연구)

  • Kim, Jung-Hoon;Jun, Hyoung Yoll;Kim, Seung Jo
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • Thermal model reduction algorithms and techniques are introduced to condense a huge satellite panel thermal model into the simplified model on the purpose of calculating the thermal responses of a satellite on orbit. Guyan condensation algorithm with the substitution matrix manipulation is developed and the mathematical procedure is depicted step by step. A block-form LU decomposition method is also invited to compare the developed algorithm. The constructed reduced thermal model induced from the detailed model based on a real satellite panel is satisfying the correlation criterion of ${\pm}2^{\circ}C$ for the validity accuracy. Guyan condensation algorithm is superior to the block-form LU decomposition method on computation time.

Preliminary Thermal Analysis for LEO Satellite Optical Payload's Thermal Vacuum Test (저궤도위성 광학탑재체의 지상 열진공 시험을 위한 예비 열해석)

  • Lee, Jongl-Yul;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.466-473
    • /
    • 2011
  • The purpose of satellite thermal control design is to maintain all the elements of a spacecraft system within their temperature limits for all mission phases. The thermal analysis model for Low Earth Orbit satellite payload level simulation is established by considering thermal vacuum test environment condition, thermal vacuum chamber configuration, and satellite's payload inner thermal environment. The established thermal analysis model is used to determine thermal vacuum test conditions and test case requirements.

Thermal Model Correlation and Heater Design Verification for LEO Satellite Optical Payload's Thermal Analysis Model Verification (저궤도 위성 광학탑재체의 열해석 모델 검증을 위한 열모델 보정 및 히터 설계)

  • Kim, Min-Jae;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1069-1076
    • /
    • 2011
  • All of the satellite components must be operated within the permissible temperature range during the mission in orbit. Therefore, thermal design is performed to develop verified thermal model and to secure thermal stability on the ground. In this study, thermal model correlation was performed to satisfy the criteria of correlation using ground thermal vacuum/thermal balance test results of LEO satellite optical payload. We also secured verified thermal model by controlling operating cycle of flight heaters. In addition, it was confirmed that all components are within the permissible temperature range through conducting orbit environment thermal analysis. We also secured thermal stability of the satellite.

Development and Verification of Thermal Analysis Model for Thermal Vacuum Test of Satellite Components (인공위성 탑재품 수준 열진공 시험에 대한 열해석 모델의 개발과 환경시험 결과를 이용한 검증)

  • Kim, Sang-Ho;Seo, Hyun-Suk;You, Jae-Ho;Han, Eun-Soo;Kim, Tai-Kyung;Kim, Hyeong-Dong;Huh, Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.842-847
    • /
    • 2010
  • Thermal analysis for the simulation of satellite component level thermal vacuum test processes was carried out by considering thermal vacuum test environment condition, thermal vacuum chamber configuration, and satellite's inner thermal environment. The transient analysis results can be obtained for the temperatures of component and thermal vacuum chamber assemblies. The thermal analysis model was verified with the component thermal environmental test results by using enhanced thermal vacuum chamber.