• Title/Summary/Keyword: 열컨덕턴스

Search Result 11, Processing Time 0.021 seconds

Radiation Conductance Determination of Ultrasonic Transducer using the Laser Interferometry (레이저 간섭계를 이용한 초음파 변환기의 방사 컨덕턴스 결정)

  • 조문재
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.174-178
    • /
    • 1993
  • 초음파 변환기의 방사 컨덕턴스를 결정하기 위해서는 변환기로부터 방사된 음향파워와 입력전압의 정밀측정을 요구하게 된다. 음\ulcorner파워는 초음파를 거의 완전 반사시킬 수 있는 표적을 사용하여 변환기로부터 방사된 음압에 의해 표적에 가해진 힘을 수동맞저울과 레이저 간섭계로 측정하여 구하였으며, 입력전압을 열 변환기와 전압계를 한 시스템으로 하여 정밀 측정하였다. 방사 컨덕턴스의 최대 측정오차는 $\pm$4% 이내로 평가되었다.

  • PDF

Analysis on the Thermal Characteristics of Variable Conductance Heat Pipe (가변 컨덕턴스 히트파이프의 열특성에 관한 해석)

  • 김근오;김무근;박병규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.38-47
    • /
    • 2001
  • The operation characteristics of variable conductance heat pipe(VCHP) were numerically investigated by using 1-dimensional diffuse-front model. For different boundary conditions, the amount of non-condensible gas charge and dimension of gas reservoir were obtained by iterative calculation. It is found that the amount of non-condensible gas charge and dimensions of gas reservoir have an effect on the temperature control of condenser for the given operating condition of VCHP. The numerical results show that VCHP has an excellent capability of temperature control when subjected to a change in the heat input.

  • PDF

Mixed Convection Transport from a Module on the Bottom Surface of Three Dimensional Channel (3차원 채널 밑면에 탑재된 모듈로부터의 혼합대류열전달)

  • Lee, Jin-Ho;Park, Sang-Hee;Riu, Kap-Jong;Bang, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.632-639
    • /
    • 2000
  • Conjugate heat transfer from a heat generating module ($31{\times}31{\times}7mm^3$) bonded through the module support on the floor of a parallel-plate channel(20mm high, 400mm wide, and 800mm long) to mixed convective air flow(0.2${\sim}$0.9m/s) is studied experimentally. The input power to the module is changed in a range 1.0${\sim}$4.5W, the floor thickness 0.2${\sim}$5mm, and the thermal resistance of module support, Rc:=0.06, 1.03 and 82.0K/W. Thermal conductance(Uc) of the board and convective thermal conductance($U_A$) from the module were derived, and the effect of V; Rc and t on Uc was investigated. It is found that the conjugate conductance (Uc) and the conductive heat transfer ratio ($Q_B$/Q) depend on the thermal resistance of the module support, the air velocity and the board thickness. The change of the module support resistance and the board thickness helps to elucidate the relative significance of heat transfer paths through the module support, the board, and from the board surface to the air. Additional information is investigated about the dependence of the heat transfer rate on the mixed convection parameter.

A New Floating Inductor Using A Voltage Differencing Transconductance Amplifier (전압 차동 트랜스컨덕턴스 증폭기를 사용한 새로운 플로팅 인덕터)

  • Bang, Junho;Lee, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.143-148
    • /
    • 2015
  • In this paper a new method is proposed for realizing active floating inductors from voltage differencing transconductance amplifier(VDTA) which is being studied nowadays. This proposed method employs only one VDTA and one transconductance for designing an active inductor from a passive floating inductor and implementing it to integrated circuits. The number of CMOS transistors can be considerably reduced from 6~18 as 1~3 gm circuits can be eliminated and even without R the design can be made, which can help in reducing the size of the circuit and power consumption. The proposed VDTA floating inductor was successfully used in constructing 1 MHz second order biquad active bandpass filter and bandwidth could be adjusted from 77kHz~1.59MHz by the changes made in gm from 6uS~20uS.

Fundamental Heat Analysis about the Thermoelectric Generation System Using the Waste Heat of Exhaust Gas from Ship (선박의 배기가스 폐열을 활용한 열전발전시스템에 관한 기초 열해석)

  • Kim, Myoung-Jun;Ga, Gwang-Jin;Chea, Gyu-Hoon;Kim, In-Seup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.583-592
    • /
    • 2016
  • IMO (International Maritime Organization) in the UN (United Nations) set up that aim at reducing $CO_2$ emission from ship by up to 30 percent until 2030. The final purpose of this study is the development of marine thermoelectric generation system using waste heat from vessel of internal combustion engines. Before the development of marine thermoelectric generation system, this paper carried out the fundamental heat analysis of marine thermoelectric generation system. It was able to obtain the valuable results about the efficiency improvement of the thermoelectric generation system. The results is as follows : 1) It was confirmed that the efficiency of thermoelectric generation system improves to 8.917 % with increasing the temperature difference of peltier module by reducing the temperature difference between peltier module and heat source at the hot side. 2) System efficiency according to change in the external load resistance was confirmed that the change width of about 6 % which does not significantly occur. 3) System efficiency in the case stainless steel at the same condition is 8.707 %. System efficiency could be confirmed that the stainless steel is higher than duralumin (8.605 %), copper (8.607 %).

A 14b 150MS/s 140mW $2.0mm^2$ 0.13um CMOS ADC for SDR (Software Defined Radio 시스템을 위한 14비트 150MS/s 140mW $2.0mm^2$ 0.13um CMOS A/D 변환기)

  • Yoo, Pil-Seon;Kim, Cha-Dong;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.27-35
    • /
    • 2008
  • This work proposes a 14b 150MS/s 0.13um CMOS ADC for SDR systems requiring simultaneously high resolution, low power, and small size at high speed. The proposed ADC employs a calibration-free four-step pipeline architecture optimizing the scaling factor for the input trans-conductance of amplifiers and the sampling capacitance in each stage to minimize thermal noise effects and power consumption at the target resolution and sampling rate. A signal- insensitive 3-D fully symmetric layout achieves a 14b level resolution by reducing a capacitor mismatch of three MDACs. The proposed supply- and temperature- insensitive current and voltage references with on-chip RC filters minimizing the effect of switching noise are implemented with off-chip C filters. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates a measured DNL and INL within 0.81LSB and 2.83LSB, at 14b, respectively. The ADC shows a maximum SNDR of 64dB and 61dB and a maximum SFDR of 71dB and 70dB at 120MS/s and 150MS/s, respectively. The ADC with an active die area of $2.0mm^2$ consumes 140mW at 150MS/s and 1.2V.

Simulation and analysis of DC characteristics in AlGaN/GaN HEMTs on sapphire, SiC and Si substrates (Sapphire SiC, Si 기판에 따른 AlGaN/GaN HEMT의 DC 전기적 특성의 시뮬레이션과 분석)

  • Kim, Su-Jin;Kim, Dong-Ho;Kim, Jae-Moo;Choi, Hong-Goo;Hahn, Cheol-Koo;Kim, Tae-Geun
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.272-278
    • /
    • 2007
  • In this paper, we report on the 2D (two-dimensional) simulation result of the DC (direct current) electrical and thermal characteristics of AlGaN/GaN HEMTs (high electron mobility transistors) grown on Si substrate, in comparison with those grown on sapphire and SiC (silicon carbide) substrate, respectively. In general, the electrical properties of HEMT are affected by electron mobility and thermal conductivity, which depend on substrate material. For this reason, the substrates of GaN-based HEMT have been widely studied today. The simulation results are compared and studied by applying general Drift-Diffusion and thermal model altering temperature as 300, 400 and 500 K, respectively. With setting T=300 K and $V_{GS}$=1 V, the $I_{D,max}$ (drain saturation current) were 189 mA/mm for sapphire, 293 mA/mm for SiC, and 258 mA/mm for Si, respectively. In addition, $G_{m,max}$ (maximum transfer conductance) of sapphire, SiC, Si was 38, 50, 31 mS/mm, respectively, at T=500 K.

  • PDF

A 12b 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC for High-Quality Video Systems (고화질 영상 시스템 응용을 위한 12비트 130MS/s 108mW $1.8mm^2$ 0.18um CMOS A/D 변환기)

  • Han, Jae-Yeol;Kim, Young-Ju;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.77-85
    • /
    • 2008
  • This work proposes a 12b 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC for high-quality video systems such as TFT-LCD displays and digital TVs requiring simultaneously high resolution, low power, and small size at high speed. The proposed ADC optimizes power consumption and chip area at the target resolution and sampling rate based on a three-step pipeline architecture. The input SHA with gate-bootstrapped sampling switches and a properly controlled trans-conductance ratio of two amplifier stages achieves a high gain and phase margin for 12b input accuracy at the Nyquist frequency. A signal-insensitive 3D-fully symmetric layout reduces a capacitor and device mismatch of two MDACs. The proposed supply- and temperature- insensitive current and voltage references are implemented on chip with a small number of transistors. The prototype ADC in a 0.18um 1P6M CMOS technology demonstrates a measured DNL and INL within 0.69LSB and 2.12LSB, respectively. The ADC shows a maximum SNDR of 53dB and 51dB and a maximum SFDR of 68dB and 66dB at 120MS/s and 130MS/s, respectively. The ADC with an active die area of $1.8mm^2$ consumes 108mW at 130MS/s and 1.8V.

A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors (높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기)

  • Moon, Kyoung-Jun;Lee, Kyung-Hoon;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.55-64
    • /
    • 2006
  • This work proposes a calibration-free 14b 70MS/s 0.13um CMOS ADC for high-performance integrated systems such as WLAN and high-definition video systems simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs signal insensitive 3-D fully symmetric layout techniques in two MDACs for high matching accuracy without any calibration. A three-stage pipeline architecture minimizes power consumption and chip area at the target resolution and sampling rate. The input SHA with a controlled trans-conductance ratio of two amplifier stages simultaneously achieves high gain and high phase margin with gate-bootstrapped sampling switches for 14b input accuracy at the Nyquist frequency. A back-end sub-ranging flash ADC with open-loop offset cancellation and interpolation achieves 6b accuracy at 70MS/s. Low-noise current and voltage references are employed on chip with optional off-chip reference voltages. The prototype ADC implemented in a 0.13um CMOS is based on a 0.35um minimum channel length for 2.5V applications. The measured DNL and INL are within 0.65LSB and l.80LSB, respectively. The prototype ADC shows maximum SNDR and SFDR of 66dB and 81dB and a power consumption of 235mW at 70MS/s. The active die area is $3.3mm^2$.

Development and Validation of a Canopy Photosynthetic Rate Model of Lettuce Using Light Intensity, CO2 Concentration, and Day after Transplanting in a Plant Factory (광도, CO2 농도 및 정식 후 생육시기에 따른 식물공장 재배 상추의 군락 광합성 모델 확립)

  • Jung, Dae Ho;Kim, Tae Young;Cho, Young-Yeol;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.132-139
    • /
    • 2018
  • The photosynthetic rate is an indicator of the growth state and growth rate of crops and is an important factor in constructing efficient production systems. The objective of this study was to develop a canopy photosynthetic rate model of romaine lettuce using the three variables of $CO_2$ concentration, light intensity, and growth stage. The canopy photosynthetic rates of the lettuce were measured at five different $CO_2$ concentrations ($600-2,200{\mu}mol{\cdot}mol^{-1}$), five light intensities ($60-340{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$), and four growth stages (5-20 days after transplanting) in three closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$). A simple multiplication model expressed by multiplying three single-variable models and the modified rectangular hyperbola model including photochemical efficiency, carboxylation conductance, and dark respiration, which vary with growth stage, were also considered. In validation, the $R^2$ value was 0.923 in the simple multiplication model, while it was 0.941 in the modified rectangular hyperbola model. The modified rectangular hyperbola model appeared to be more appropriate than the simple multiplication model in expressing canopy photosynthetic rates. The model developed in this study will contribute to the determination of an optimal $CO_2$ concentration and light intensity with the growth stage of lettuce in plant factories.