• Title/Summary/Keyword: 열차 정차시간

Search Result 24, Processing Time 0.032 seconds

Development of the Train Dwell Time Model : Metering Strategy to Control Passenger Flows in the Congested Platform (승강장 혼잡관리를 위한 열차의 정차시간 예측모형)

  • KIM, Hyun;Lee, Seon-Ha;LIM, Guk-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.15-27
    • /
    • 2017
  • In general, increasing train dwell time leads to increasing train service frequency, and it in turn contributes to increasing the congestion level of train and platform. Therefore, the studies on train dwell time have received growing attention in the perspective of scheduling train operation. This study develops a prediction model of train dwell time to enable train operators to mitigate platform congestion by metering passenger inflow at platform gate with respect to platform congestion levels in real-time. To estimate the prediction model, three types of independent variables were applied: number of passengers to get into train, number of passengers to get out of trains, and train weights, which are collectable in real-time. The explanatory power of the estimated model was 0.809, and all of the dependent variables were statistically significant at the 99%. As a result, this model can be available for the basis of on-time train service through platform gate metering, which is a strategy to manage passenger inflow at the platform.

Optimizing Train Dwell Times during Commuter Hours using Reinforcement Learning (강화 학습을 이용한 출퇴근 시간대 열차 정차 시간 최적화)

  • SuJeong Choi;Yujin Lim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.530-533
    • /
    • 2023
  • 대중교통은 현대 사회에서 필수적인 요소이며 특히 출퇴근 시간대에는 도로 교통 상황에 영향을 덜 받는 지하철의 수요가 높은 편이다. 그러나 제한된 물리적 자원으로 인해 열차 내 혼잡도 증가와 열차 운행 지연은 불가피한 상황이다. 본 논문에서는 이를 해결하기 위한 한 가지 방법으로 강화학습기반 DQN 알고리즘을 이용한 열차 정차 시간 최적화 기법을 제안했다. 열차 정차 시간과 승차 인원 모두 고려하면서 최적화를 진행했을 때와 그렇지 않았을 때를 비교하면서 실험을 진행하여 성능을 분석했다.

Defining Rail Transit Level of Service and Analysis of it's Affection According to Rapid Transit Railway(KTX) (고속철도(KTX) 수요에 따른 dwelling time예측 모형개발)

  • Suh, Sun-Duck;Shin, Young-Ho;Shim, Hyun-Jin;Kim, Hwan-Su
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1612-1627
    • /
    • 2008
  • Dwelling time is one of the factors that influence in rail. Current research in dwelling time has been focusing on railways, the state of the research in high-speed rail's dwelling time is not complete. Dwelling time is consisted of time to open door, time to get into and out of vehicle and time of the departure it takes after the passenger's door was closed, it was affected by various factors such as congestion's degree in vehicle, the number of persons that get into and out of vehicle, congestion's degree in station. In order to analyze theses, we need data analysis such as the number of persons that get into and out of vehicle, congestion's degree in station, congestion's degree in vehicle, but the congestion's degree and passenger's distribution chart in vehicle is excluded in this research due to difficulty of gathering data, and thus we will develop forecasting models through high-speed rail's demand most affected by the dwelling time.

  • PDF

Train Service Analysis of Intercity Rail Station (지역간 철도역의 열차운행체계 연구)

  • Lee, Jin-Seon;Kim, Gyeong-Tae;Park, Beom-Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.111-122
    • /
    • 2007
  • This paper investigates the rail service patterns by train class. The emphasis in intercity rail planning is to more efficiently use of existing station facilities. Rail transit operations are affected by the system layout and ridership patterns and by work rules. Operations are also influenced by past practices and the institutional setting. Main factors to decide train service patterns are the location, socioeconomic characteristics, land use and travel demand of the station. In this context, the travel demand of intercity rail station is of crucial significance. Tests on a KTX case shows that train service frequency can be efficiently decreased in weekday to transport the same passenger demand. The work has shown many subjects that need further research including various factors influencing on train frequency. This study serves the railroad authorities in planning and determining business strategy in the increasingly competitive environment of regional rail transport.

A Study on the Accurate Stopping Control of a Train for the Urban Rail Transit Using Kalman Filter (칼만 필터를 이용한 도시철도 열차 정위치 정차에 관한 연구)

  • Kim, Jungtai;Lee, Jaeho;Kim, Moo Sun;Park, Chul Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.655-662
    • /
    • 2016
  • Accurate stopping control is important for trains, especially now that many train stations are equipped with platform screen doors. Various algorithms have been proposed for accurate stopping control. However, most metro trains in South Korea use classic control algorithms such as PID control because other algorithms are too complex to realize. PID control has merits of simple structure and operation. However, PID control sometimes fails, and much time is needed to find the proper coefficients due to the long control period and the brake delay. We propose a control algorithm that uses a Kalman filter. The Kalman filter estimates the states at the time when braking starts. Then, a suitable control input is derived for proper control. System modeling and a computer simulation were performed with consideration of the brake properties and the period of the control system. The superiority of the proposed control algorithm is shown by analyzing stop errors.

Finding Train Frequencies and Halting Patterns Using Optimization Models : a Focus on the Line Plan for High-Speed Trains (최적화 모형을 활용한 열차 운행 횟수 및 정차 패턴 생성 : 고속 열차 노선 계획을 중심으로)

  • Park, Bum Hwan;Kim, Jang-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.529-538
    • /
    • 2017
  • There has been much interest in optimizing the halting patterns of high-speed trains, for example by introducing more non-stop trains to supply faster train service to the passengers, which could later bring about a discussion about introducing new high speed train service with differentiated price and service. In general, halting patterns can be considered by constructing an efficient line plan, in which all demand should be covered and the total travel time can be reduced as much as possible. In this study, we present a two-step process based on two optimization models. One is to minimize total kilometers of trains to run on each route ; this will be done using a line planning model under the assumption of all-stop patterns. Then, in the next step, the all-stop patterns are optimally decomposed into several halting patterns in order to minimize the total travel time. We applied the two-step process to the latest demand data in order to develop KTX halting patterns as well as to determine the frequency of each line and compare the current line plan with the optimized one.

The Study on Train Electric Consumption Analysis According to Operation Speed (운행속도에 따른 열차소비전력 분석에 관한 연구)

  • Lee, Kang-Mi;Lee, Jae-Ho;Kim, Yong-Gyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.182-185
    • /
    • 2011
  • 본 논문에서는 국내 고속철도 차량 즉, 경부고속철도를 운행하는 KTX, KTX산천 그리고 현재 개발중인 HEMU400x을 대상으로 운행속도 및 운행패턴에 따른 열차 소비전력을 분석하였다. 이를 위해, 선로조건을 고려한 차량의 운전속도 조건과 운행시간,소비전력 등을 예측하기 위한 TPS(Train Performance Simulation)프로그램을 이용하였다. 열차운행 시뮬레이션을 수행하기 위해선 차량, 선로, 속도의 기본 데이터를 필요로 한다. 차량에 대한 데이터는 차량의 최고속도, 제동성능, 견인력 등의 기본 성능과 열차편성에 따른 중량, 길이, 동력차량형식, 열차주행저항등에 대한 제원을 요한다. 선로데이터는 운행시간 예측을 대상으로 하는 선로에 대한 거리별 구배 및 선형, 정거장 위치 및 정차시간에 대한 데이터이다. 속도조건은 구배 및 곡선에 대한 선로제한속도로, 선로데이터와 연계하여 각 선로위치별 차량의 제한속도로 이용된다. 본 논문에서는 경부고속철도 구간에서 운행하는 고속차량 3가지를 대상으로 증속에 따른 전력소모량을 비교하였다.

  • PDF

A Study on Energy Efficiency Timetabling Problem (에너지 절약형 열차시각표 작성에 관한 연구)

  • Kim, Kyung-Min;Oh, Seog-Moon;Min, Jae-Hong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1383-1389
    • /
    • 2009
  • This paper describes an Energy Efficient Timetabling Problem(EETP). In these days, the researches on development of an energy efficient railway systems are highlighted over the world. The departures occurred in an electrical power feeding circuit at the same time are necessary to be reduced as far as possible, to minimize the energy consumption. The paper addresses the operational requirements and facility restrictions to construct a mathematical model for EETP. In addition, it suggests several types of objectives for the model.

  • PDF

Study of an Optimal Control Algorithm for Train Interval Under Disturbance (외란을 고려한 열차간격 최적제어 알고리즘 연구)

  • Kim, Kiwoong;Lee, Jongwoo;Park, Minkee
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.419-425
    • /
    • 2015
  • When a train is delayed because of a disturbance, the time interval between successive trains increases and high-frequency metro lines can become unstable. Time interval control is therefore necessary in preventing such instabilities. In this paper, we propose an optimal interval control algorithm that is easy-to-implement and that guarantees system stability. In the proposed method, the controlled trains are determined from the time interval deviations between successive trains; the control algorithm for staying time is designed by use of a discrete traffic model to ensure an optimal time interval between successive trains. The results of a computer simulation are also given to demonstrate the validity of the proposed algorithm.

Line Planning Optimization Model for Intercity Railway (지역간 철도의 노선계획 최적화 모형)

  • Oh, Dongkyu;Kho, Seung-Young;Kang, Seungmo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.2
    • /
    • pp.80-89
    • /
    • 2013
  • The purpose of this research is to optimize the line planning of the intercity passenger railway. In this study, the line planning problem has been formulated into a mixed integer programming by minimizing both user costs (passenger's total travel time) and operator costs (operation, maintenance and vehicle costs) with multiple train types. As a solution algorithm, the branch-and-bound method is used to solve this problem. The change of travel demand, train speed and the number of schedules have been tested through sensitivity analysis. The optimal stop-schedules and frequency as well as system split with respect to each train type have been found in the case study of Kyoung-bu railway line in Korea. The model and results of this research are useful to make a decision for railway operation strategy, to analyze the efficiency of new railway systems and to evaluate the social costs of users and operators.