• Title/Summary/Keyword: 열차 소음

Search Result 201, Processing Time 0.023 seconds

Suggestion of Prediction Equation for Environmental Noise of KTX which Runs on Conventional Line (기존선 통과 KTX 열차의 환경소음 예측식 제안)

  • Cho Jun-Ho;Koh Hyo-In;Choi Kang-Yun;Han Hwan-Su
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.158-163
    • /
    • 2005
  • After the opening of Kyong-Bu High Speed Railway, tremendous change was occurred in the various realm in Korean Society. But in the Daegu-Busan section, KTX was still running on the conventional line where the railroad was improved to more straightly. For the noise prediction of KTX train which runs on the conventional line, components of noise source were analyzed using SEL(Sound Exposure Level) of meassured data. For the validation of suggested prediction equation, the predicted result was compared to the measured.

  • PDF

Investigation of the Bridge Vibration and Noise under Passage of the Light Rail Train (경량전철 교량 상부구조의 주행열차하중에 의한 진동 및 소음 분석)

  • Kim, Sung-Il;Yeo, In-Ho;Rhee, In-Kyu;Kim, Sung-Choon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.522-529
    • /
    • 2006
  • Running train is one of the most main factor for railway bridge vibration. The repeated forces with equidistant axles cause the magnification of dynamic responses which relates with maintenance of the track structure and structure-borne noises. The noise problem is one of the most important issues in services of light rail transit system which usually passes through towns. The noise of railway bridges can be divided into the noise from track-vehicle system and structure-borne noises. In the present study, The vibration and noise of the LRT bridge will be investigated with utilizing dynamics responses from moving train as input data for noise analysis.

  • PDF

Characteristics of the aero-acoustic noise generated from the inter-coach spacing of a high-speed train (고속열차의 차간 공간에서 발생하는 공력소음의 특성)

  • Park, Jun-Hong;Park, Chan-Kyung;Choi, Sung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1259-1263
    • /
    • 2006
  • The inter-coach spacing is one of the most important sources of the aero-acoustic noise of a high-speed train. When fluid at high speed flows over an open cavity, such as the inter-coach spacing, large acoustic pressure fields inside the cavity are produced by fluid/structure interactions at the downstream end of the cavity. In this study experiments were performed to investigate the characteristics the aero-acoustic noise generation from the inter-coach spacing of a high-speed train. Results of the measurement confirmed that the noise generated from the gap between mud-flaps are strongly dependent on the size of the gap.

  • PDF

Analysis and evalution of interior noise for Hanvit-200 train (한빛 200 열차의 실내 소음 특성 분석)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1766-1769
    • /
    • 2008
  • INnterior noise characteristic of Korean tilting train(Hanvit 200) under the field test conditions is analyzed in this paper. The test railroad track was selected from Seodaejon to Songjeongri in Honam line. $4^{th}$ and $5^{th}$ car are decided to measure interior noise level among a train of six cars. The test subject open field executed from test sections. The speed of test trains when from existing operation speed and speed up 20% of existing speed. On open field at the time of operation speed of Hanvit 200 trains from below 160km/h interior noise level at $68dBA{\sim}70dBA$.

  • PDF

Performance Evaluation of Laminated-Tempered Glass as a Component of Noise Barrier on Metro Railway Elevated Bridge Against Train Induced Vibration and Wind Load (지하철 고가교 접합강화유리 방음판의 열차진동 및 풍하중에 대한 성능평가)

  • Kim, Suk-Su;Lee, Ho-Beom;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.30-41
    • /
    • 2017
  • Types of noise barrier installed for noise attenuation are largely divided into noise-absorbing format and noise-proofing format. In these days, installation of transparent noise barrier is general trend to solve problems that hinder sunshine and landscape. Some kinds of transparent boards are used to one of components in noise barriers, but in some cases, less transparency and worse pollution due to yellowing phenomena, and severe material deformation are to harm the urban aesthetics Therefore laminated-tempered glass board in that yellowing phenomena does not occur can be replaced as a transparent one to secure those shortcomings. In this paper, the structural safety against train induced vibration and the resistibility to wind load are analyzed for laminated-tempered glass system as a component of noise barrier installed on Metro railway elevated bridges. Also the appropriateness is evaluated through flexural bending performance test, compressive strength test, modulus of elasticity tests, and impact test for the system or the glass material itself. All of these processes are intended to present the deployment of logic to evaluate the adequacy for the system.

Analysis of Vibration Transfer Characteristics of Approach Bridges for an Elevated Railroad Station (철도선하역사 접속교량의 진동전달 특성 분석)

  • Choi, Sanghyun;Kim, Jin-Ho;Yoo, Yong;Kwon, Se-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2911-2916
    • /
    • 2015
  • The elevated railway station, above which a train is passing, is vulnerable to noise and vibration compared to other station types. To better identify the vibration characteristics of the elevated railway station, the transferred vibration from approach bridges should be analyzed. In this paper, through experiments and simulations, the transfer characteristics of the vibration from approach bridges is analyzed. The study structure is Geomgok station and the anaylses are conducted using ABAQUS three dimensional numerical model. To identify the change in the transfer characteristics for various bearing types, the analyses are performed considering mechanical properties of bearing for railway bridges. The measurement is performed using the accelerometers attached to the approach bridges and the station structure along the passing path of trains.

Vibration Reduction Effect and Structural Behavior Analysis for Column Member Reinforced with Vibration Non-transmissible Material (진동절연재로 보강된 기둥부재의 진동저감효과 및 구조적 거동분석)

  • Kim, Jin-Ho;Yi, Na-Hyun;Hur, Jin-Ho;Kim, Hee-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • For elevated railway station on which track is connected with superstructure of station, structural vibration level and structure-borne-noise level has exceeded the reference level due to structural characteristics which transmits vibration directly. Therefore, existing elevated railway station is in need of economical and effective vibration reduction method which enable train service without interruption. In this study, structural vibration non-transmissible system which is applied to vibroisolating material for column member is developed to reduce vibration. That system is cut covering material of the column section using water-jet method and is installed with vibroisolating material on cut section. To verify vibration reduction effect and structural performance for structural vibration non-transmissible system, impact hammer test and cyclic lateral load test are performed for 1/4 scale test specimens. It is observed that natural period which means vibration response characteristics is shifted, and damping ratio is increased about 15~30% which means that system is effective to reduce structural vibration through vibration test. Also load-displacement relation and stiffness change rate of the columns are examined, and it is shown that ductility and energy dissipation capacity is increased. From test results, it is found that vibration non-transmissible system which is applied to column member enable to maintains structural function.

A study on the characteristics of Micro Pressure wave for the optimum cross-section design in Honam high speed railway (호남고속철도 터널 단면선정을 위한 미기압파 특성 분석에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.51-68
    • /
    • 2008
  • When the train enters into a tunnel a high speed, pressure waves are generated inside the tunnel. The pressure waves at propagate in a form of compression wave toward the tunnel exit and a fraction of the compression waves that arrives at the exit of the tunnel are discharged to outside of the tunnel and the remainder is reflected into the tunnel as expansion waves. The compression waves emitted from the tunnel does not radiate in a specific direction but in all directions. If the amplitude of the compression wave is great, it causes noise and vibration, and it is called "Micro-Pressure Wave." "Micro-Pressure Wave" must be considered as a decision for the optimum tunnel cross-section as the amplitude of the compression wave depends on train speed, tunnel length, area of tunnel and train. Therefore, this paper introduces the case study of Micro-Pressure Wave characteristics for determination of tunnel cross section in Honam high speed railway, the pressure inside the tunnel and the micro-pressure waves at tunnel exit were measured at Hwashin 5 tunnel in Kyungbu HSR line. At the same time. a test of train operation model was performed and then the measurement results and test results were compared to verify that the various parameters used as input conditions for the numerical simulations, which were appropriate. Also a model test was performed, in order to analysis of the Micro-Pressure Wave Mitigation Performance by Type of Hood at Entrance Portal.

  • PDF

Application of risk analysis and assessment considering tunnel stability and environmental effects in tunnel design (터널 안정성 및 환경성을 고려한 위험도 평가기법의 적용)

  • Kim, Young-Geun;Kim, Do-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Recently, because of the various factors by uncertainty of underground, the risks in tunnelling have been occurred increasingly. Therefore, it is very important to estimate and control the risks considering geotechnical conditions for tunnel stability and environmental problems by tunnel construction. In this study, the risk analysis for tunnel stability was carried out by classifying the risk factors such as ground support capacity, ground settlement, the inflow of groundwater into the tunnel and the damage by the earthquake. Also, the risk assessment for the environmental problems was performed by calculating the vibration and noise by blasting and the drawdown of the groundwater level caused by tunnel construction. Each risk factor was evaluated quantitatively based on the probabilistic and statistic technique, then it was analyzed the distribution characteristic along overall tunnel site. Finally, it was evaluated that how much each risk factor influences on the construction cost with a period for tunnel construction, so it is possible to perform reasonable tunnel design which was capable of minimizing the risks in the tunnel construction.

  • PDF

Running Safety Analysis of Railway Vehicle passing through Curve depending on Rail Inclination Change (레일 경좌 변화에 따른 곡선부 통과열차의 주행안전성 해석)

  • Kim, Moon Ki;Eom, Beom Gyu;Lee, Hi Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.199-208
    • /
    • 2013
  • So far today, there is a speed limit by the radius of curve based on operation regulation in domestic railway, however a study for the maximum running speed at the curved section without any derailment would be necessary. The two major factors related to the running safety of railway vehicle are classified as the railway vehicle condition and the track condition. In terms of the rail inclination among many other factors, the determination of rail inclination within the possible limit is necessary for the geometrical structure of the optimum track. The disregard of the geometrical parameter related to the rail inclination may cause a serious problem to the running safety of railway vehicle. This study is focusing on the analyzing of running safety regard to the change of rail inclination among the many other parameters to improve derailment safety, so that there is an affection analysis of the running safety regard to the change of rail inclination in the ideal and geometric track condition. Also There is an affection analysis of the running safety regard to the simultaneous change of rail inclination and the running speed at the curved section. According to analysis results of running safety, In case that the left and right rail inclination are 1/40, the running safety of this condition defined than other conditions. Also, the rail inclination of conventional lines is 1/40, Therefore, the railway vehicle passing through curve is safe when the railway vehicle runs in conventional lines.