• Title/Summary/Keyword: 열차의 좌석용량

Search Result 6, Processing Time 0.02 seconds

A Train Seat Capacity Distribution Model to Multiple Origin-Destinations (다수의 기종점에 대한 열차의 좌석용량배분모형)

  • 김성호;오석문
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2002
  • In this paper we present a nonlinear programming model for the train seat capacity distribution with a numerical example. The model finds the optimal capacity distribution methods which minimize the sum of the differences between the demands and the seat capacities. Also the model provides the information on the degree of the discrepancy between the demand and the seat capacities. One can use the model as a tool for planning train seat capacity planning.

A Nonlinear Programming Model for the Solution of the Train Seat Capacity Distribution Problem (열차의 좌석용량 배분을 위한 비선형계획모형)

  • 김성호;홍순흠
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.72-79
    • /
    • 2001
  • In this paper we present a nonlinear programming model for the solution of the train seat capacity distribution problem (TSCDP) with a numerical example. The TSCDP model finds the optimal capacity distribution methods which minimize the sum of the differences between the demands and the seat capacities. Also the TSCDP provides the information on the degree of the discrepancy between the demand and the seat capacities. One can use the TSCDP model as a tool for planning train seat capacity planning.

  • PDF

KTX Impact on Train Operation Pattern ; An Empirical Analysis (KTX 개통후 서울~천안구간의 열차운행패턴 분석)

  • Lee Jin-Sun;Kim Kyoung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.507-512
    • /
    • 2005
  • Railroad transportation system has experienced major changes due to KTX introduction. Kyungbu corridor especially Seoul to Cheonan has line capacity problem and its solution has been a primary concern to researchers and policy decision makers. This study explored pattern of train operation between Seoul and Cheonan after the introduction of KTX in 2004. Both the number of trains and available seat capacity per day have increased but maximum number of trains per specific hour has not been changed much. Demand for train shows that if concentrated in a specific time, so number of trains during the peak hour should be increased. But, it is difficult ? 새 line capacity, so increasing seat capacity per train might be an option. An increase in an avaliable sear should be considered the characteristics of each train lines.

A Study on Managing High-Speed Railway Links and Rolling Stocks Based on the Level of Service (서비스수준(LOS)을 감안한 고속철도 노선 및 차량관리방안)

  • Oh, Jae Kyoung;Kim, Si Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1025-1032
    • /
    • 2017
  • In this paper, the level of service (LOS) is defined for high-speed railway links and rolling stocks. Based on this LOS, how to manage high-speed railway facility is also suggested. The LOS is divided into 6 levels from A to F. The measurement of effectiveness (MOE) for railway links is derived from the relationship between a total delay time and a railway link utilization ratio. Another MOE, volume over capacity (V/C), is also proposed. On the other hand, the LOS for high-speed railway rolling stocks is based on the density of people in a rolling stock. Above all, LOS D is defined to the total number of seats. Then, LOS A is 50% of the LOS D, LOS B is 70% of the LOS D, LOS C is 90% of the LOS D and LOS D~F is defined as the maximum seats and standing people at the level of each. Finally, a method to manage high-speed railway links and rolling stocks is proposed in order to keep the level of service at the target by the government.

고속전철의 세계적 기술개발 현황과 한국형 고속전철

  • 이종찬
    • 전기의세계
    • /
    • v.38 no.6
    • /
    • pp.12-18
    • /
    • 1989
  • 한국형 고속전철을 고려하는데 있어서 위에서의 기술적인 측면보다도 오히려 수송용량, 경제성, 운영방식의 측면에서 더 많은 비중을 두고 검토해야 하는지도 모른다. 그러한 측면에서 한국형 고속전철은 한국의 지형조건, 경부간의 연변인구, 현경부선의 장래, 고속전철의 운영방식, 한국철도의 기술수준 등을 고려하지 않으면 안되고 한국형이어야 한다. 한국형 고속전철은 1. 경부간 고속전철의 거리는 380Km정도이므로 2000년대의 국민 일인당 시간가치를 기준으로 최고속도를 결정하여야 하고 표정속도는 190Km/h이상이어야 한다. 2. 고속화를 위한 필수조건인 차량의 축중을 17톤 이하로 제한하여야 하고 기존의 철도차량이 고속전철선에 야간열차등으로 투입되더라도 이 원칙은 유지되어야 한다. 3. 수송능력을 확보하기 위하여 열차편성당 좌석수는 800석 이하로 확보되어야 한다. 4. 기존선에서의 연장운행이 불가피하므로 기존선의 차량한계 내에서 안전하게 운행될 수 있어야 하고 전력공급은 기존선 방식인 A/C25KV, 60HZ의 사용이 불가피하다. 5. 고속전철의 건설비용, 차량의 제작비, 기술이전도, 국산화율 등을 고려한 시스템이어야 한다. 한국형 고속전철은 위의 기본원칙을 최소한 만조시킬 수 있는 시스템이어야 한다.

  • PDF

Railway Line Planning Considering the Configuration of Lines with Various Halting Patterns (다양한 정차 패턴을 고려한 열차 노선계획의 수립)

  • Park, Bum-Hwan;Oh, Seog-Moon;Hong, Soon-Heum;Moon, Dae-Seop
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.115-125
    • /
    • 2005
  • The line planning problem is to determine the origin and destination stations of the lines with their frequencies so as to meet the OD demands. Since the advent of high speed trains, Korea railway is confronted with the urgent difficulty to reconstruct the line configuration with the frequencies of each line and each fleet type so the demands could be newly created as well as satisfied. Furthermore. the existing trains except the high speed trains suffer from a longer traveling time than before. Now, to reduce the passenger traveling time, the trains with the various halting patterns are run in the same line. Therefore, it is necessary to develop a new line planning model to consider the various halting patterns. Most of studies find the frequencies of each lines which meet the link traffic loads or minimum link frequencies. But these are based on the assumption of all stop patterns. Furthermore, it is not easy to include the actual constraints as like the minimum number of stops at a station, the maximum number of stops or a train, etc. We develop the line planning model considering not only the various halting patterns but also the actual constraints which is based on the multicommodity network flow model with the additional constraints.