• Title/Summary/Keyword: 열전 냉각기

Search Result 162, Processing Time 0.028 seconds

A Study on the Controller Design of Cooling System for LCD Panel Console (LCD 콘솔용 냉각장치의 제어기 설계에 관한 연구)

  • Choi, Kab-Yong;Oh, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3666-3672
    • /
    • 2010
  • This study dealt with the controller design of the cooling system for controlling the inside temperature of the LCD panel console(the rest console') using as an outdoor billboard. The cooling performance of the LCD console that had been developed by the preceding research, was insufficient in the performance of the controller. In order to improve the performance of the system, in this study defined the structure and the design condition of the system first, after measured the parameters having influence on the dynamic characteristics, and developed the mathematical model for the analysis of the system. Finally planned a controlling scheme of the system and simulated the controller for the performance checking, compared the performance of this system controller with the preceding one. The purpose of this study is the presentation of the more improving method for the system control.

Analysis of Cooling Effect Using Compressed Cold Air in Turing Process (압축냉각공기를 이용한 선삭가공시 냉각효과 해석)

  • Kwak, Seung-Yong;Kim, Dong-Kil;Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1007-1013
    • /
    • 2003
  • As environmental restriction kas continuously become more strict, machining technology has emphasized on development of environment-friendly technology. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on workers health and working environment. In this study, compressed cold air was used as a replacement for conventional cutting fluids. The cooling effect on cutting tool was analyzed using the finite element method and the computational fluid dynamics. This study focused on the temperature simulation of cutting tool by real flow analysis of cold air. The maximum flow rate and the minimum temperature of compressed cold air are 300ι/min and -30$^{\circ}C$ respectively. To compare the simulation and experimental results, inner temperature of the cutting tool was measured with the thermocouple embedded in the insert. The results show that the analysis of cutting temperature using FEM and CFD is resonable, and the replacement of cutting fluid with cold air is available.

An Experimental Study on the Optimal Operation Condition of an Air-Cooler using Thermoelectric Modules (열전모듈을 이용한 냉방기의 최적 운전조건에 관한 실험적 연구)

  • Hwang, Jun;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2006
  • This article presents the optimal operation of an air conditioner using thermoelectric modules. A prototype of air conditioner using four thermoelectric modules has been designed and built. The system performance with evaporative cooling for hot side of the module are studied in detail for several operating parameters, such as input power to the thermoelectric module, fans and pump. It is found that the optimal input voltage to the thermoelectric module and pump is selected for the best system performance based on the cooling capacity and the COP at a given operating condition. It is also found that both the cooling capacity and COP of a system is increased with an increase in the input power to fans. The cooling performance could be improved when the ambient temperature is increased and the relative humidity is decreased since the evaporative cooling at the hot side has been increased.

Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module (집중 태양열에 의한 온도구배가 열전발전모듈의 출력 성능에 미치는 영향)

  • Choi, Kyungwho;Ahn, Dahoon;Boo, Joon Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.777-784
    • /
    • 2017
  • Energy harvesting through a thermoelectric module normally makes use of the temperature gradient in the system's operational environment. Therefore, it is difficult to obtain the desired output power when the system is subjected to an environment in which a low temperature gradient is generated across the module, because the power generation efficiency of the thermoelectric device is not optimized. The utilization of solar energy, which is a form of renewable energy abundant in nature, has mostly been limited to photovoltaic solar cells and solar thermal energy generation. However, photovoltaic power generation is capable of utilizing only a narrow wavelength band from the sunlight and, thus, the power generation efficiency might be lowered by light scattering. In the case of solar thermal energy generation, the system usually requires large-scale facilities. In this study, a simple and small size thermoelectric power generation system with a solar concentrator was designed to create a large temperature gradient for enhanced performance. A solar tracking system was used to concentrate the solar thermal energy during the experiments and a liquid circulating chiller was installed to maintain a large temperature gradient in order to avoid heat transfer to the bottom of the thermoelectric module. Then, the setup was tested through a series of experiments and the performance of the system was analyzed for the purpose of evaluating its feasibility and validity.

Geometric Thermoelectric Generator Leg Shape Design for Efficient Waste Heat Recovery (효율적인 폐열 회수를 위한 기하학적 열전소자 다리 설계)

  • Hyeon-Woo Kang;Jung-Hoe Kim;Young-Ki Cho;Won-Seok Choi;Hyun-Ji Lee;Hun-Kee Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.589-602
    • /
    • 2024
  • Thermoelectric generator (TEG) generally do not have high heat conversion efficiencies. The performance of a thermoelectric generator module depends on the shape of the legs as well as the properties of the material and the number of legs. In this study, the leg shapes of thermoelectric elements are modeled into various geometric structures such as cylinder and cube shaped to efficiently harvest waste heat, and the electrical characteristics are compared numerically. The temperature gradient and power generation according to the bridge shape are found to be highest at the existing Cube shape. As a result of comparing the power generation using the cooling effect, the Cone shape was the highest in natural convection and the Hourglass shape was highest in forced convection. Research results confirm that geometry can affect the efficiency of thermoelectric generators.

Numerical Analysis of Off-Gas Flow in Hot Area of the Vitrification Plant (유리화공정 고온영역에서의 방사성 배기체 유동해석)

  • Park, Seung-Chul;Kang, Won-Gu;Hwang, Tae-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.213-220
    • /
    • 2007
  • Appropriate numerical models for the simulation of off-gas flow in hot area of the vitrification plant have been developed in this study. The models have been applied to analyze the effect of design parameters of real plant and numerical analyses have been performed for CCM(Cold Crucible Melter), pipe cooler and HTF(High Temperature Filter). At first, the effect of excess oxygen and the ratio of oxygen distribution on combustion characteristics in the CCM has been studied. Next, solidification behavior of radio nuclide in the pipe cooler has been numerically modeled and scrutinized. Finally, flow pattern in accordance with the location of off-gas entrance of the HTF has been compared.

  • PDF

Numerical Analysis of Off-Gas Flow in Hot Area of the Vitrification Plant (유리화공정 고온영역에서의 방사성 배기체 유동해석)

  • Park Seung-Chul;Kim Byong-Ryol;Shin Sang-Woon;Lee Jin Wook;Kang Won Gu;Hong Seok Jin
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.69-78
    • /
    • 2005
  • Appropriate numerical models for the simulation of off-gas flow in hot area of the vitrification plant have been developed in this study. The models have been applied to analyze the effect of design parameters of real plant and numerical analyses have been performed for CCM(Cold Crucible Melter), pipe cooler and HTF(High Temperature Filter) At first, the effect of excess oxygen and the ratio of oxygen distribution on combustion characteristics in the CCM has been studied. Next, solidification behavior of radio nuclide In the pipe tooler has been numerically modeled and scrutinized. Finally, flow pattern In accordance with the location of off-gas entrance of the HTF has been compared.

  • PDF

Numerical Analysis of the Non-Isothermal Heat Transfer in Solids Conveying Zone of a Single Screw Extruder (단축압출기 고체수송부에서의 비등온 열전달 현상에 관한 수치 해석)

  • Ahn Young-Cheol
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.549-556
    • /
    • 2005
  • Effects of the dimensionless variables on the heat transport phenomena in the extrusion process of a single screw extruder have been studied numerically. Based on the understanding of the solids conveying related to the geometrical structure and characteristics of the screw, the heat balance equation for the solids conveying zone was established and normalized. The finite volume method and power-law scheme were applied to derive a discretized equation and the equation was solved using the alternating direction iterative method with relaxation. Effects of the dimensionless parameters, Biot and Peclet numbers, that define the heat transfer characteristics of the solids conveying zone have been investigated with respect to the temperature of the feeding zone and the length of the solids conveying zone. As the Biot number is increased, the heat loss by cooling dominates to decrease the temperature of the barrel but it has little effects on the temperature of the solids bed and the length of the solids conveying zone. On the other hand, if the Peclet number is increased, the convection term dominates to decrease the temperature of the solids bed and it results in an increase in the length of the solids conveying zone.

Improvement of Compressor-Cooling Efficiency Based on Ribs (리브를 활용한 압축기 냉각 효율 향상에 관한 연구)

  • Hwang, Il Sun;Lee, Young Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.70-75
    • /
    • 2021
  • Recently, several efforts have been made to improve the thermal efficiency of a refrigerant compressor. In this study, we attempted to improve energy efficiency ratio (EER) performance by reducing the superheat of the linear compressor. To this end, heat generated inside the compressor must be effectively dissipated. Therefore, heat dissipation was improved by processing ribs in the gap-flow region generated owing to the vibration of the compressor body. The results showed that the convective heat transfer coefficient becomes significantly high when ribs are used, increasing the heat dissipation rate. This helps improve EER by reducing the superheat of the compressor.

Evaporation kent transfer characteristics of R-290 and R-600a in the horizontal tubes (수평관내 R-290과 R-600a의 증발 열전달 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.264-269
    • /
    • 2008
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC(e.g. R290 and R600a), R-22 as a HCFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07 mm and 6.54 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4\;kg/m^2s$ and cooling capacity of $0.95{\sim}10.1\;kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of R-290 and R-600a was higher value than that of R-22. In comparison with R-22, the evaporation heat transfer coefficient of R-290 and 600a is approximately $56.7{\sim}70.1$ and $46.6{\sim}59.7%$ higher, respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well matched with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.