• Title/Summary/Keyword: 열전재료

Search Result 816, Processing Time 0.028 seconds

Effects of fiber forms on thermal anisotropy in fibrous composites (섬유강화 복합재의 열이방성에 대한 섬유 형태적 영향)

  • Sim, Hwan-Bo;Lee, Bo-Seong
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.215-222
    • /
    • 1995
  • Anisotropic pitch-based C-type and hollow carbon fibers can obtain wider shear stresses during the spinning and induce higher molecular orientation than that of round along the fiber axis. These fibers reinforced unidirectional epoxy composites were prepared by hot-press moulding method and perpendicular and parallel thermal conductivities of the composites were measured by a steady-state meth od. In the case of round carbon fibers reinforced epoxy composites(H-CF/EP), thermal anisotropic factor showed nearly 50, while those of H-CF/EP and C-CF/EP showed about 130 and 118, respectively. As a result, both H-CF/EP and C-CF/EP had an excellent directional thermal conductivity to distribute heat, above 200 %.

  • PDF

Improvement of Thermoelectric Properties of Bismuth Telluride Thin Films using Rapid Thermal Processing (Bismuth Telluride 박막의 열전특성 개선을 위한 급속 열처리효과)

  • Kim, Dong-Ho;Lee, Gun-Hwan
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.292-296
    • /
    • 2006
  • Effects of rapid thermal annealing of bismuth telluride thin films on their thermoelectric properties were investigated. Films with four different compositions were elaborated by co-sputtering of Bi and Te targets. Rapid thermal treatments in range of $300{\sim}400^{\circ}C$ were carried out during 10 minutes under the reducing atmosphere (Ar with 10% $H_2$). As the temperature of thermal treatment increased, carrier concentrations of films decreased while their mobilities increased. These changes were clearly observed for the films close to the stoichiometric composition. Rapid thermal treatment was found to be effective in improving the thermoelectric properties of $Bi_2Te_3$ films. Recrystallization of $Bi_2Te_3$ phase has caused the enhancement of thermoelectric properties, along with the decrease of the carrier concentration. Maximum values of Seebeck coefficient and power factor were obtained for the films treated at $400^{\circ}C$ (about $-128{\mu}V/K$ and $9{\times}10^{-4}\;W/K^2m$, respectively). With further higher temperature ($500^{\circ}C$), thermoelectric properties deteriorated due to the evaporation of Te element and subsequent disruption of film's structure.

Sn Filling Effects on the Thermoelectric Properties of CoSb3 Skutterudites (Skutterudite CoSb3의 열전특성에 미치는 Sn의 충진효과)

  • Jung, Jae-Yong;Ur, Soon-Chul;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.529-532
    • /
    • 2006
  • Sn-filled $Co_8Sb_{24}$ skutterudites were synthesized by the encapsulated induction melting process. Single ${\delta}-phase$ was successfully obtained by subsequent annealing and confirmed by X-ray diffraction analysis. Temperature dependences of Seebeck coefficient, electrical resistivity and thermal conductivity were examined from 300 K to 700 K. The positive Seebeck coefficient confirmed the p-type conductivity of the Sn-filled $Co_8Sb_{24}$. Electrical resistivity increased with increasing temperature, which shows that the Sn-filled $Co_8Sb_{24}$ skutterudite is a highly degenerate semiconductor. Thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. Thermoelectric figure of merit was enhanced by Sn filling and its optimum filling content was considered to be $z{\leq}0.5$ in the $Sn_zCo_8Sb_{24}$ system.

Thermoelectric Properties of Binary Skutterudite CoSb3 Prepared by Encapsulated Induction Melting (밀폐유도용해로 제조된 2원계 Skutterudite CoSb3의 열전특성)

  • You, Sin-Wook;Jung, Jae-Yong;Ur, Soon-Chul;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.312-317
    • /
    • 2006
  • Binary skutterudite $CoSb_3$ compounds were prepared by the encapsulated induction melting (EIM) process, and their thermoelectric, microstructural and mechanical properties were examined. Single-phase ${\delta}-CoSb_3$ was successfully produced by the EIM and subsequent heat treatment at 773 K-873 K for 24 hours in vacuum. Seebeck coefficient increased with increasing heat treatment temperature up to 673 K, showing the positive signs in the range of measuring temperature. However, the samples heat-treated at 773 K-873 K showed negative Seebeck coefficient from room temperature to 400 K, while it showed positive signs above 400 K. Electrical resistivity decreased with increasing temperature, showing typical semiconducting conductivity. Thermal conductivity decreased drastically with increasing heat-treatment temperature. This is closely related with the phase transition to ${\delta}-CoSb_3$.

Thermal Design of 21 W LED Light Engine Using Thermal Conductive Plastic (열전도성 플라스틱을 이용한 21 W급 LED Light Engine의 방열설계)

  • Choi, Won-Ho;Choi, Doo-Ho;Lee, Jin-Yeol;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.208-212
    • /
    • 2015
  • This study will design the structural optimization of 21 W LED heat sink using the thermal conductive plastic materials. The thermal conductive plastic heat sink is inferior to aluminum heat sinks in thermal properties. This study will solve this problem using formability of thermal conductive plastic heat sink. A heat sink was optimized in terms of the number, and the thickness of fins and the base thickness of the heat sink, using the Heatsinkdesigner software. Also by using SolidWorks Flow simulation and thermal analysis software, the thermal characteristics of the heat sink were analyzed. As the result, the optimized heat sink has 17 fins, which are 1.5 mm thick and a 3.7 mm-thick base. The highest and the lowest temperature were $51.65^{\circ}C$ and $46.24^{\circ}C$ respectively. Based on these results, The thermal conductive plastic heat sink is considered possible to overcome heating problem when designing in complex structure.

In-Plane Thermoelectric Properties of InGaAlAs Thin Film with Embedded ErAs Nanoparticles (ErAs 나노입자가 첨가된 InGaAlAs 박막의 평면정렬방향으로의 열전특성)

  • Lee, Yong-Joong
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.456-460
    • /
    • 2011
  • Microelectromechanical systems (MEMS)-fabricated suspended devices were used to measure the in-plane electrical conductivity, Seebeck coefficient, and thermal conductivity of 304 nm and 516 nm thick InGaAlAs films with 0.3% ErAs nanoparticle inclusions by volume. The suspended device allows comprehensive thermoelectric property measurements from a single thin film or nanowire sample. Both thin film samples have identical material compositions and the sole difference is in the sample thickness. The measured Seebeck coefficient, electrical conductivity, and thermal conductivity were all larger in magnitude for the thicker sample. While the relative change in values was dependent on the temperature, the thermal conductivity demonstrated the largest decrease for the thinner sample in the measurement temperature range of 325 K to 425 K. This could be a result of the increased phonon scattering due to the surface defects and included ErAs nanoparticles. Similar to the results from other material systems, the combination of the measured data resulted in higher values of the thermoelectric figure of merit (ZT) for the thinner sample; this result supports the theory that the reduced dimensionality, such as in twodimensional thin films or one-dimensional nanowires, can enhance the thermoelectric figure of merit compared with bulk threedimensional materials. The results strengthen and provide a possible direction in locating and optimizing thermoelectric materials for energy applications.

A Study on the Diffusion Barrier at the p/n Junctions of $Bi_{0.5}Sb_{1.5}Te_3/Bi_2Te_{2.4}Se_{0.6} p/n$ Thermoelectric Thin Films (열전 박막 $Bi_{0.5}Sb_{1.5}Te_3/Bi_2Te_{2.4}Se_{0.6} p/n$ 접합에서의 확산 장벽에 관한 연구)

  • Kim, Il-Ho;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.678-683
    • /
    • 1996
  • In the fabrication processes of thin film thermoelectrics, a subsequent annealing treatment is inevitable to reduce the defects and residual stresses introduced during the film growth, and to make the uniform carrier concentration of the film. However, the diffusion-induced atomic redistribution and the broadening of p/n junction region are expected to affect the thermoelectric properties of thin film modules. The present study intends to investigate the diffusion at the p/n junctions of thermoelectric thin films and to relate it to the property changes. The film junctions of p-type(Bi0.5Sb1.5Te3)and n-type(Bi2Te2.4Se0.6)were prepared by the flash evaporation method. Aluminum thin layer was employed as a diffusion barrier between p-and n-type films of the junction. This was found to be an effective barrier by showing a negligible diffusion into both type films. After annealing treatment, the thermoelectric properties of p/n couples with aluminum barrier layer were accordingly retained their properties without any deterioration.

  • PDF

Study on the ablation structures of Carbon/Phenolic composites used PAN based carbon fiber (PAN계 탄소섬유를 이용한 Carbon/Phenolic 복합재의 삭마구조 특성 연구)

  • Im, Yeon-Su;Kim, Dong-Gyu;Park, In-Seo;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.339-348
    • /
    • 1994
  • The study has been conducted to know ablation microstructures and characteristics in carbon /phenolic composites. Ablation properties depend on mole fraction of $H_2O$ and $C0_2$ gas which were produced by reaction between propellant and oxidizer. However, the results of this study shown that the ablation also depended on weaving structure, density of fabric, and tow size of carbon fiber. 3K 8HS fabric showed superior ablation resistance to others, 3K twill and 12K 8HS fabric structures.

  • PDF

Thermal conductivity and properties of sheath alloy for High-$T_c$ superconductor tape (고온초전도 선재용 피복합금의 열전도도 측정 및 특성평가)

  • 박형상;지봉기;김중석;임준형;오승진;오승진;주진호;나완수;유재무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.711-717
    • /
    • 2000
  • Effect of alloying element additions to Ag on thermal conductivity electrical conductivity and mechanical properties of sheath materials for BSCCO tapes has been characterized. The thermal conductivity at low temperature range(10~300K) of Ag alloys were evaluated by both direct and indirect measurement techniques and compared with each other. It was observed that thermal conductivity decreased with increasing the content of alloying elements such as Au, Pd and Mg. Thermal conductivity of pure Ag at 30 K was measured to be 994.0 W/m.K on the other hand the corresponding values of A $g_{0.9995}$/M $g_{0.0005}$, A $g_{0.974}$/A $u_{0.025}$/M $g_{0.001}$, A $g_{0.973}$/Au.0.025//M $g_{0.002}$, and A $g_{0.92}$/P $d_{0.06}$/M $g_{0.02}$ were 342.6, 62.1, 59.2, 28.9 W/m.K respectively indicating 3 to 30 times lower than that of pure Ag. In addition alloying element additions to Ag improved mechanical strength while reduced elongation probably due to the strengthening mechanisms by the presence of additive atoms.s.

  • PDF

Silicon On Insulator with Buried Alumina Layer (알루미나를 매몰절연막으로 사용한 Silicon On Insulator)

  • Bae, Young-Ho;Kwon, Jae-Woo;Kong, Dae-Young;Kwon, Kyung-Wook;Lee, Jong-Hyun;Cristoloveanu, S.;Oshima, K.;Kang, Min-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.130-132
    • /
    • 2003
  • ALD(Atomic Layer Deposition) 법으로 박막 알루미나를 형성한 후 웨이퍼 접합과 박막화 공정으로 알루미나를 매몰절연막으로 하는 SOI 구조를 제조하고 그 특성을 조사하였다. 알루미나 박막의 유전 특성과 실리콘과의 계면 특성은 C-V 측정으로, 단면 분석은 SEM(Scanning Electron Microscope) 촬영으로 조사하였다. 알루미나와 실리콘을 접합하기 위하여 1100C에서 열처리를 행한 후 알루미나와 실리콘의 계면 상태 밀도는 $2.5{\times}10^{11}/cm^2-eV$였다. 그리고 SEM의 단연 분석과 AES(Auger Electron Spectroscope)의 깊이 방향 분석을 통해서 매몰 알루미나층의 존재를 확인하였다. 알루미나는 실리콘 산화막보다 높은 열전도성을 가지므로 이를 매몰절연막으로 하여 SOI 구조를 제조하면 기존의 실리콘산화막을 매몰절연막으로 하는 SOI를 기판으로 하여 제조되는 소자보다 selg heating 효과가 감소된 우수한 특성의 소자를 제조할 수 있다.

  • PDF