• 제목/요약/키워드: 열전도도 측정

검색결과 270건 처리시간 0.031초

An Experimental Study on the Critical Velocity Considering the Slope in Tunnel Fire (경사터널내 화재 발생시 경사도가 임계속도에 미치는 영향에 관한 연구)

  • Kim, Seung-Ryoul;Jang, Yong-Jun;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • 제11권1호
    • /
    • pp.7-12
    • /
    • 2008
  • An experimental study has been conducted to investigate the effect of tunnel slope on critical velocity by using the model funnel of the 1/20 reduced-scale applying the Floods scaling law. the square liquid pool burners were used for methanol, acetone and n-heptane fires. tunnel. Tunnel slopes varied as five different degrees $0^{\circ}$, $2^{\circ}$, $4^{\circ}$, $6^{\circ}$ and $8^{\circ}$. The mass loss rate and the temperatures are measured by a load celt and K-type thermocouples for tunnel slope. Present study results in bigger the critical velocity than the research of Atikinson and Wu using the propane burner. Therefore, when estimating the critical velocity in slope tunnel, the variations of the heat release rate is an important factor. The reason is the ventilation velocity directly affects variation of heat release rate when slope tunnel fire occurred.

Comparison of Thermal Insulation of Multi-Layer Thermal Screens for Greenhouse: Results of Hot-Box Test (온실용 다겹보온자재의 보온성 비교 -Hot box 시험 결과를 중심으로-)

  • Yun, Sung-Wook;Lee, Si-Young;Kang, Dong-Hyeon;Son, Jinkwan;Park, Min-Jung;Kim, Hee-Tae;Choi, Duk-Kyu
    • Journal of Bio-Environment Control
    • /
    • 제28권3호
    • /
    • pp.255-264
    • /
    • 2019
  • In this study, we conducted the hot box tests to compare the changes in thermal insulation for the four types of multi-layer thermal screens by the used period after collecting them from the greenhouses in the field when they were replaced at the end of their usage. The main materials for these four types of multi-layer thermal screens were matt georgette, non-woven fabrics, polyethylene (PE) foam, chemical cotton, etc. These materials were differently combined for each multi-layer thermal screen. We built specimens ($70{\times}70cm$) for each of these multi-layer thermal screens and measured the temperature descending rate, heat transmission coefficient, and thermal resistance for each specimen through the hot box tests. With regard to the material combinations of multi-layer thermal screens, thermal insulation can be increased by applying a multi-layered PE foam. However, it is considered that the multi-layered PE foam significantly less contributes to heat-retaining than chemical wool that forms an air-insulating layer inside multi-layer thermal screens. For the suitable heat-retaining performance of multi-layer thermal screens, basically, materials with the function of forming an air-insulating layer such as chemical cotton should be contained in multi-layer thermal screens. The temperature descending rate, heat transmission coefficient, and thermal resistance of multi-layer thermal screens were appropriately measured through the hot box tests designed in this study. However, in this study, we took into consideration only the four kinds of multi-layer thermal screens due to difficulties in collecting used multi-layer thermal screens. This is the results obtained with relatively few examples and it is the limit of this study. In the future, more cases should be investigated and supplemented through related research.

Relief of Residual Stress and Estimation of Heat-Treatment Characteristics for Al6061 Alloy by Cryogenic Heat Treatment (극저온 열처리에 의한 Al6061 합금의 잔류응력 제거 및 열처리 특성 평가)

  • Ko, Dae-Hoon;Park, Ki-Jung;Cho, Young-Rae;Lim, Hak-Jin;Lee, Jung-Min;Kim, Min-Byung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제35권10호
    • /
    • pp.1145-1153
    • /
    • 2011
  • The purpose of this study is to relieve the residual stress of Al6061 using cryogenic heat treatment. Experimental T6 and cryogenic heat treatments were carried out to define the convective heat-transfer coefficient, which was then applied in the finite-element method (FEM) to predict the residual stress. The predicted residual stress was compared with the residual stress measured by X-ray diffraction (XRD), and the results were in good agreement. The mechanical properties were estimated by measuring the electrical conductivity and hardness. In addition, the size and formation of the precipitations were observed by TEM and XRD analysis for both T6 and cryogenic heat treatments. The effects of the cryogenic heat treatment on the residual stress, mechanical properties, and precipitation of Al6061 alloys were thus confirmed.

Hydraulic-Thermal-Mechanical Properties and Radionuclide Release-Retarding Capacity of Kyungju Bentonite (경주 벤토나이트의 수리-열-역학적 특성 및 핵종 유출 저지능)

  • Jae-Owan Lee;Won-Jin Cho;Pil-Soo Hahn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제2권2호
    • /
    • pp.87-96
    • /
    • 2004
  • Studies were conducted to select the candidate buffer material for a high-level waste (HLW) repository in Korea. This paper presents the hydraulic properties, the swelling properties, the thermal properties, and the mechanical properties as well as the radionuclide release-retarding capacity of Kyungju bentonite as part of those studies. Experimental results showed that the hydraulic conductivities of the compacted bentonite were very low and less than $10^{-11}$m/s. The values decreased with increasing the dry density of the compacted bentonite. The swelling pressures were in the range of 0.66 MPa to 14.4 ㎫ and they increased with increasing the dry density. The thermal conductivities were in the range of 0.80 ㎉/m $h^{\circ}C$ to 1.52 ㎉/m $h^{\circ}C$. The unconfined compressive strength, Young's modulus and Poison's ratio showed the range of 0.55 ㎫ to 8.83 ㎫, 59 ㎫ to 1275 ㎫, and 0.05 to 0.20, respectively, when the dry densities of the compacted bentonite were 1.4 Ms/㎥ to 1.8 Mg/㎥. The diffusion coefficients in the compacted bentonite were measured under an oxidizing condition. The values were $1.7{\times}10^{-10}$m^2$/s to 3.4{\times}10^{-10}$m^2$/s for electrically neutral tritium (H-3), 8.6{\times}10^{-14}$m^2$/s to 1.3{\times}10^{-12}$m^2$/s for cations (Cs, Sr, Ni), 1.2{\times}10^{-11}$m^2$/s to 9.5{\times}10^{-11}$m^2$/s for anions (I, Tc), and 3.0{\times}10^{-14} $m^2$/s to 1.8{\times}10^{-13}$m^2$/s $for actinides (U, Am), when tile dry densities were in the range of 1.2 Mg/㎥ to 1.8 Mg/㎥. The obtained results will be used in assessing the barrier properties of Kyungju bentonite as a buffer material of a repository in Korea.n Korea.

  • PDF

Estimation of Soil Cooling Load in the Root Zone of Greenhouses (온실내 근권부의 지중냉각부하 추정)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • 제11권4호
    • /
    • pp.151-156
    • /
    • 2002
  • Root zone cooling, such as soil or nutrient solution cooling, is less expensive than air cooling in the whole greenhouse and is effective in promoting root activity, improving water absorption rate, decreasing plant temperature, and reducing high temperature stress. The heat transfer of a soil cooling system in a plastic greenhouse was analyzed to estimate cooling loads. The thermal conductivity of soil, calculated by measured heat fluxes in the soil, showed the positive correlation with the soil water content. It ranged from 0.83 to 0.96 W.m$^{[-10]}$ .$^{\circ}C$$^{[-10]}$ at 19 to 36% of soil water contents. As the indoor solar radiation increased, the temperature difference between soil surface and indoor air linearly increased. At 300 to 800 W.m$^{-2}$ of indoor solar radiations, the soil surface temperature rose from 3.5 to 7.$0^{\circ}C$ in bare ground and 1.0 to 2.5$^{\circ}C$ under the canopy. Cooling loads in the root zone soil were estimated with solar radiation, soil water content, and temperature difference between air and soil. At 300 to 600 W.m$^{-2}$ of indoor solar radiations and 20 to 40% of soil water contents,46 to 59 W.m$^{-2}$ of soil cooling loads are required to maintain the temperature difference of 1$0^{\circ}C$ between indoor air and root zone soil.

Thermal Behavior and Leaf Temperature in a High Pressure Sodium Lamp Supplemented Greenhouse (고압나트륨등 보광 온실의 열적 거동 및 엽온 분석)

  • Seungri Yoon;Jin Hyun Kim;Minju Shin;Dongpil Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • 제32권1호
    • /
    • pp.48-56
    • /
    • 2023
  • High-pressure sodium (HPS) lamps have been widely used as a useful supplemental light source to emit sufficient photosynthetically active radiation and provide a radiant heat, which contribute the heat requirement in greenhouses. The objective of this study to analyze the thermal characteristics of HPS lamp and thermal behavior in supplemented greenhouse, and evaluate the performance of a horizontal leaf temperature of sweet pepper plants using computational fluid dynamics (CFD) simulation. We simulated horizontal leaf temperature on upper canopy according to three growth stage scenarios, which represented 1.0, 1.6, and 2.2 plant height, respectively. We also measured vertical leaf and air temperature accompanied by heat generation of HPS lamps. There was large leaf to air temperature differential due to non-uniformity in temperature. In our numerical calculation, thermal energy of HPS lamps contributed of 50.1% the total heat requirement on Dec. 2022. The CFD model was validated by comparing measured and simulated data at the same operating condition. Mean absolute error and root mean square error were below 0.5, which means the CFD simulation values were highly accurate. Our result about vertical leaf and air temperature can be used in decision making for efficient thermal energy management and crop growth.

Experimental Study on Characteristics of Steam Condensation in a Sub-cooled Water Pool (과냉각수조에서 증기응축 특성에 관한 실험적 연구)

  • Kim, Hwan-Yeol;Cho, Seok;Song, Chul-Hwa;Chung, Moon-Ki;Choi, Sang-Min
    • Journal of Energy Engineering
    • /
    • 제8권2호
    • /
    • pp.298-308
    • /
    • 1999
  • Experimental study on characteristics of direct contact condensation of steam discharged into a sub-cooled water pool has been performed using five different sizes of horizontal nozzle over a wide range of steam mass fluxes and pool temperatures. Steam condensation phenomena have been observed visually and by taking pictures of steam jets using a high speed video camera. Two different steam jet shapes such as ellipsoidal shape and conical shape were typically observed for a stable steam jet, depending on the steam mass flux and pool temperature. The steam jet expansion ratio and the steam jet length as well as the condensation heat transfer coefficients were determined. The effect of steam mass flux, pool temperature, and nozzle diameter on these parameters were also discussed. Empirical correlations for the steam jet lengths and the condensation heat transfer coefficients as a function of steam mass flux and condensation driving potential were established. The axial and radial temperature distributions in steam jet and in surrounding water were measured. The effect of steam mass flux, pool temperature, and nozzle diameter were also discussed. The condensation regime map, which consists of six regimes such as chugging, transient chugging, condensation oscillation, stable condensation, bubble condensation oscillation, and intermittent oscillation condensation, were established. In addition, the dynamic pressures at the pool wall were measured. The close relation of dynamic pressure and steam condensation mode, which is also dependent on steam mass flux and pool temperature, was found.

  • PDF

Optimization Techniques for the Inverse Analysis of Service Boundary Conditions in a Porous Catalyst Substrate with Fluid-Structure Interaction Problems (유체 구조 상호작용 문제를 가진 다공성 촉매 담체에서 실동경계조건의 역문제 해석을 위한 최적화 기법)

  • Baek, Seok-Heum;Cho, Seok-Swoo;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제35권10호
    • /
    • pp.1161-1170
    • /
    • 2011
  • This paper presents a solution to the inverse problem for the service boundary conditions of thermal-flow and structure analysis in a catalyst substrate. The exhaust-gas purification efficiency of a catalyst substrate is influenced by the shape parameter, catalyst ingredients and so on and is estimated by the thermal flow uniformity. The formulations of the inverse problem of obtaining the thermal-flow parameters (inlet temperature, velocity, heat of reaction, convective heat-transfer coefficient) and the direct problem of estimating from a given outlet temperature distribution are described. An experiment was designed and the response-surface optimization technique was used to solve the proposed inverse problem. The temperature distribution of the catalyst substrate was obtained by thermal-flow analysis for the predicted thermal-flow parameters. The thermal stress and durability assessments for the catalyst substrate were performed on the basis of this temperature distribution. The efficiency and accuracy of the inverse approach have been demonstrated through the achievement of good agreement between the thermal-flow response surface model and the results of experimental vehicle tests.

Multi-element Ultrasound Applicator for the Treatment of Cancer in Uterus and Cervix (자궁암 치료용 다채널 초음파 온열치료기)

  • Lee Rena
    • Progress in Medical Physics
    • /
    • 제16권1호
    • /
    • pp.16-23
    • /
    • 2005
  • The objective of this study was to construct multi-element ultrasound applicators for the treatment of gynecologic cancer with high dose rate brachytherapy. For the treatment of uterus, piezo-ceramic crystal transducer (PZT -5A) with outer diameter of 4 mm, wall thickness of 1.3 mm, and length of 24.5 mm was selected. For the treatment of cervix or vagina, it should be possible to insert the applicator into the vagina. Thus, a cylindrical PZT -8 material with outer diameter of 24.5 mm, wall thickness of 1.3 mm, and length of 15.2 mm was selected. The operating frequencies determined by vector impedance measurement were 3.2 MHz for the PZT 5A cylinder (OD=4 mm) and 1.7 MHz for the PZT -8 cylinder (OD: 24.5 mm). The ratios of generated acoustic output power to applied electric power were 33% and 61% for the tandem type crystal and the cylinder type crystal, respectively. The radiated acoustic pressure fields from both transducers were calculated using a Matlab code and measured in water using hydrophone. There was good agreement between measured and calculated acoustic pressure field distribution. For a tandem type transducer, the calculated acoustic pressure field decreased from 0.023 MPa at 10 mm to 0.010 Mpa at 30 mm, the reduction of 57%. For the cylinder type transducer which will be used for the treatment of vagina showed 78% reduction at 15 mm and 66% at 25 mm as compared to values at 5 mm from the surface. Based on the characteristics of the transducers, this study demonstrated the possibility of using the crystals as a heating source. Finally, a 3-element and 4-element prototype applicators were constructed. The 3-element applicator is 75 mm long and 4 mm thick and will be used for the treatment of uterus. The 4-element applicator is 61 mm long and 24.5 mm thick and will be used for the treatment of vagina. Using these applicators, it is possible to generate enough power to increase temperature to therapeutic level.

  • PDF

Effect of Package Size and Pasteurization Temperature on the Quality of Sous Vide Processed Spinach (Sous Vide 가공 시금치의 품질에 미치는 포장단위 및 살균온도의 영향)

  • 장재덕;김기태;이동선
    • Food Science and Preservation
    • /
    • 제11권2호
    • /
    • pp.195-200
    • /
    • 2004
  • Microbial lethal value and nutrient retention of sous vide processed spinach were evaluated with mathematical model prediction and experimental trial for different package sizes and pasteurization temperatures. The package size covers 500 g, 1 kg and 2 kg, while the pasteurization temperature includes 80, 90 and 97$^{\circ}C$. The basic process scheme consists of filling blanched spinach into barrier plastic film pouch, sealing under vacuum, pasteurization in hot water with over pressure and final cooling to 3$^{\circ}C$. Pasteurization condition was designed based on attainment of 6 decimal inactivation of Listeria monocytogenes at geometric center of the pouch package by heating cycle, which was determined by general method. Heat penetration property of the package and thermal destruction kinetics were combined to estimate the retention of ascorbic acid and chlorophyll. Smaller packages with shorter pasteurization time gave better nutrient retention, physical and chemical qualities. Larger package size was estimated and confirmed experimentally to give higher pasteurization value at center, lower ascorbic acid and chlorophyll contents caused by longer heat process time. Lower pasteurization temperature with longer process time was predicted to give lower pasteurization value at center and lower ascorbic acid, while chlorophyll content was affected little by the temperature. Experimental trial showed better retention of ascorbic acid and chlorophyll for smaller package and higher pasteurization temperature with shorter heating time. The beneficial effect of smaller package and higher pasteurization temperature was also observed in texture, color retention and drip production.