• Title/Summary/Keyword: 열전도도 측정

Search Result 270, Processing Time 0.025 seconds

Comparison of hand, thermal and optical properties of woven fabrics made of triangular and circular shaped filaments (삼각사와 원형사로 제직된 직물의 태, 열적성질 및 광학적 성질의 비교)

  • 심현주;홍경아
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.47-52
    • /
    • 2002
  • The handle of fabrics including tactility and sense of visuality are closely related to the factors governing the preferences of end-users. This study shows the change of mechanical properties, thermal properties and optical properties by comparing two fabrics which are woven with circular shaped filaments and with triangular ones. The fabric mechanical characteristics required for primary hand values were evaluated with the KES-FB system. The mechanical properties measured by KES-FB system shows that fabrics made of circular filaments are greater than those made of triangular ones. The thermal properties measured by KES-F7(Thermo Labo II) system shows that the values of the initial maximum value(qmax) and the thermal conductivity(λ) are higher in the fabric made of triangular shaped ones. When the light rays tall on a surface, the fabric made of triangular filaments shows more lustrous than circular ones.

  • PDF

An Experimental Study of Thermal Mixing of Steam Jet Condensation through an I-Sparser in a Quench Tank (수조내 I-Sparser의 증기제트 응축에 의한 열혼합 실험)

  • Kim Yeon-Sik;Jun Hyeong-Gil;Song Chul-Hwa
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.62-71
    • /
    • 2005
  • An experimental study on thermal mixing of steam jet condensation through the I-Sparger of APR1400 design using B&C (Blowdown and Condensation) test facility. Due to the limit of the steam supply capability of the pressurizer, transient thermal mixing experiments were conducted. Temperature distributions in the quench tank were measured using thermocouples located at various positions. From the experimental data, local temperature variations for various locations and vertically cross-sectional temperature distributions for several times were depicted and presented. The result shows the characteristics of thermal mixing of the I-Sparger depending on the design features of the I-Sparger.

Mechanical alloy and Thermoelectric Properties of $\beta-FeSi_2$ by Planetary Ball Milling (기계적 합금법에 의한 $\beta-FeSi_2$분말 합성 및 열전특성)

  • Park Keunil;Cho Sung Il
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • The mechanical synthesis of thermoelectric material $FeSi_2$ by planetary ball mill has been investigated. The homogeneous and amorphous mixture of Fe-Si has been obtained by mechanical alloying for 850 rpm-40 min. The $\beta-FeSi_2$ powder could be synthesized by 1123 K-3 hr annealing heat treatment after mechanical alloying for 850 rpm-10, 20, and 40 min. The ceramic samples doped with the maximum content up to $10\;at.\;\%$ Co have exhibited semiconduction phenomena and maximum thermoelectric powder at 440K.

Modeling and Simulation of Drying Cylinders in Paper Processes (제지공정 건조 실린더의 모델링 및 모사)

  • Lee, Eun Ho;Kwak, Ki-Young;Yeo, Yeong-Koo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.17-24
    • /
    • 2007
  • The purpose of the present study is to identify the drying cylinder model in paper plants and to analyze characteristics of process responses for changes in input variables. The model developed in this work is based on actual plant operation data where the steam pressure applied to the cylinder behaves as the major variable. It is found that heat transfer coefficients from the condensate to the canvas could be represented as empirical relations based on heat conductivities and operation data. The effectiveness of the cylinder model is demonstrated by the measured moisture contents and web temperature. Stability of the drying process is analyzed based on the transfer functions derived from the cylinder model.

Effects of Cooking Methods with Different Heat Intensities on Antioxidant Activity and Physicochemical Properties of Garlic (열처리 조리방법이 마늘의 항산화 활성과 이화학적 특성에 미치는 영향)

  • Jo, Hyeri;Surh, Jeonghee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1784-1791
    • /
    • 2016
  • Garlic was subjected to eight different cooking methods (raw, boiling, steaming, microwave cooking, deep-frying, oven-roasting, pan-frying, and pan-roasting) utilized for typical Korean cuisine. Garlic was analyzed for antioxidant activities and physicochemical properties to elucidate effects of cooking. Garlic cooked at higher temperatures showed significantly lower lightness and higher yellowness (P<0.001). In particular, deep-frying and pan-frying resulted in lowest lightness and soluble solid content, indicating that non-enzymatic browning reactions were more facilitated. Compared with raw garlic, all cooked garlic tended to have lower thiosulfinates, presumably due to decomposition into polysulfides and/or leaching into cooking water and oil. Microwave cooking retained organic acids, total reducing capacity, and flavonoids, which can be attributed to low microwave intensity and shorter cooking time under which heat-labile bioactive components might have undergone less decomposition. Cooking significantly increased metal-chelating activity (P<0.001). In addition, oven-roasting and pan-roasting enhanced total reducing capacity and flavonoid content, indicating that thermal treatments increased the extractability of bioactive components from garlic. However, boiling, deep-frying, and pan-frying, in which garlic is in contact directly with a hot cooking medium, reduced antioxidant activities. Deep-frying resulted in largest reduction in DPPH radical scavenging activity of garlic, which correlated well with reduction of total reducing capacity and flavonoid content. The results show that the antioxidant activity of garlic could be affected by cooking method, particularly heat intensity and/or direct contact of the cooking medium.

The growth of GaN on the metallic compound graphite substrate by HVPE (HVPE 방법에 의한 금속 화합물 탄소체 기판 위의 GaN 성장)

  • Kim, Ji Young;Lee, Gang Seok;Park, Min Ah;Shin, Min Jeong;Yi, Sam Nyung;Yang, Min;Ahn, Hyung Soo;Yu, Young Moon;Kim, Suck-Whan;Lee, Hyo Suk;Kang, Hee Shin;Jeon, Hun Soo;Sawaki, Nobuhiko
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.213-217
    • /
    • 2013
  • The GaN layer was typical III-V nitride semiconductor and was grown on the sapphire substrate which cheap and convenient. However, sapphire substrate is non-conductivity, low thermal conductivity and has large lattice mismatch with the GaN layer. In this paper, the poly GaN epilayer was grown by HVPE on the metallic compound graphite substrate with good heat dissipation, high thermal and electrical conductivity. We tried to observe the growth mechanism of the GaN epilayer grown on the amorphous metallic compound graphite substrate. The HCl and $NH_3$ gas were flowed to grow the GaN epilayer. The temperature of source zone and growth zone in the HVPE system was set at $850^{\circ}C$ and $1090^{\circ}C$, respectively. The GaN epilayer grown on the metallic compound graphite substrate was observed by SEM, EDS, XRD measurement.

Si 기판 저항률이 GaAs/Ge 이중접합 태양전지 효율에 미치는 영향

  • O, Se-Ung;Yang, Chang-Jae;Sin, Geon-Uk;Jeon, Dong-Hwan;Kim, Chang-Ju;Park, Won-Gyu;Go, Cheol-Gi;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.210-210
    • /
    • 2012
  • Ge 기판을 이용한 GaInP/GaAs/Ge 삼중접합 태양전지는 43.5%의 높은 광전효율을 기록하고 있으며, 이를 지상용 태양광 발전시스템에 이용하려는 연구가 진행 중이다[1]. 그러나, 이러한 다중접합 태양전지는 셀 제작 비용에 있어 Ge기판의 가격이 차지하는 비중이 높고 대면적 기판을 이용하기 힘든 단점이 있다. 한편, 무게, 기계적 강도와 열전도도 측면에서 Si 기판은 Ge 기판에 비해 장점이 있다. 아울러, 상대적으로 낮은 가격의 대면적 기판을 사용할 수 있기 때문에 Si 기판으로 Ge 기판을 대체할 경우 다중접합 태양전지의 높은 제작 비용을 낮추는 효과도 기대할 수 있다. Si 기판의 장점을 취하며 고효율 태양전지를 제작하기 위해, 이번 실험에서 우리는 Ge 에피층이 성장된 Si 기판 위에 GaAs 태양전지를 제작하였다. GaAs, GaInP와 비슷한 격자상수를 갖고 있는 Ge과 달리, Si은 이들 물질(GaAs, GaInP)과 4%의 격자상수 차이를 갖고 있으며 이로 인해 성장과정에서 관통전위가 발생하게 된다. 이러한 관통전위는 소자의 개방전압을 감소시키는 원인으로 작용한다. 실제로 Si 기판 위에 제작된 GaAs/Ge 이중접합 태양전지에서 관통전위 밀도에 따른 개방전압 감소를 확인할 수 있었다. 관통전위로 인한 영향 이외에, Si 기판위에 제작된 태양전지에서는Ge 기판 위에 제작된 태양전지에 비하여 낮은 fill factor가 관찰되었다. 이것은 Si 기판 위에 제작된 GaAs/Ge 이중접합 태양전지가 높은 직렬저항을 가지고 있기 때문이다. 따라서 이번 실험에서는 Si 기판 위에 제작한 GeAs/Ge 이중접합 태양전지의 직렬저항의 원인을 전산모사와 실험을 통하여 규명하였다. TCAD (APSYS-2010)를 이용한 전산모사 결과, Si 기판의 낮은 불순물 농도 ($1{\times}10^{15}/cm^3$)에 따른 직렬저항의 원인으로 파악되었으며, 전류-전압 특성을 측정하여 실험적으로 이를 확인하였다. 이러한 직렬저항 성분을 줄이기 위하여 Si 기판의 p형 불순물 농도가 전류 전압 특성 곡선에 미치는 영향을 전산모사를 통하여 알아보았으며, Si 기판의 불순물 농도가 $1{\times}10^{17}/cm^3$ 이상으로 증가할 경우, 직렬저항 성분이 크게 감소 하는 것을 전산모사 결과로 예상할 수 있었다.

  • PDF

Thermal Properties of Buffer Material for a High-Level Waste Repository Considering Temperature Variation (고준위폐기물 처분시설 완충재의 온도변화에 따른 열물성)

  • Yoon, Seok;Kim, Geon-Young;Park, Tae-Jin;Lee, Jae-Kwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.25-31
    • /
    • 2017
  • The buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW). As the buffer is located between a disposal canister and host rock, it is indispensable to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. Since high quantity of heat from a disposal canister is released to the surrounding buffer, thermal properties of the buffer are very important parameters for the analysis of the entire disposal safety. Especially, temperature criteria of the compacted bentonite buffer can affect the design of HLW repository facility. Therefore, this paper investigated thermal properties for the Kyungju compacted bentonite buffer which is the only bentonite produced in South Korea. Hot wire method and dual probe method were used to measure thermal conductivity and specific heat capacity of the compacted bentonite buffer according to the temperature variation. Thermal conductivity and specific heat capacity were decreased dramatically when temperature variation was between $22^{\circ}C{\sim}110^{\circ}C$ as degree of saturation decreased according to the temperature variation. However, there was little variation under the high temperature condition at $110^{\circ}C{\sim}150^{\circ}C$.

Retention Behavior of Poly(Ethylene-co-Vinyl Acetate)s in Thermal Field-Flow Fractionation (열장 흐름 분획법에서 에틸렌-아세트산 비닐 혼성중합체들의 머무름거동에 관한 연구)

  • Jeon, Seon Ju;Jo, Gyeong Ho;Lee, Dae Un;Mun, Myeong Hui
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.6
    • /
    • pp.427-434
    • /
    • 1994
  • The retention behaviors of poly(ethylene-co-vinyl acetate)s have been studied by thermal field-flow fractionation(ThFFF) with respect to effective separation and characterization of thermal diffusion coefficients($D_{\tau}$) as one of the physicochemical properties of polymers. The eight copolymers are different in vinyl acetate composition ranging from 25% to 70% and in molecular weight ranging from 110,000 to 285,000. The carrier solvents are THF, toluene and chlorobenzene which have different viscosities and thermal conductivities. It is shown that the retention of a copolymer is dependent on the type of the carrier, the molecular weight and chemical composition of the copolymer. The results show that the retention of a copolymer increases when either vinyl acetate composition or the molecular weight increase. $D_{\tau}$ values measured by experiments vary from 1.36∼5.97 $\cm^2/(s.K)$ depending on the copolymer composition and the type of the carrier solvent. These values increase $(r^2{\geq}0.928)$ with increase of weight % of vinyl acetate. THF is found to be the proper carrier solvent for separation of copolymers employed in this study due to the fact that a $D_{\tau}$ value greatly changes with variation of copolymer composition. From the above results, ThFFF can be used for separation of copolymers with similar molecular sizes but different compositions.

  • PDF

An Empirical Study on Real-Time Temperature and Concentration Measurement Through Optical Absorption Characteristic Analysis of Gas in a Large Combustion System (가스의 광 흡수 특성 분석을 통한 대형 연소시스템 내 실시간 온도 및 농도 계측에 관한 실증 연구)

  • Park, Jiyeon;So, Sunghyun;Park, Daeguen;Ryu, Changkook;Lee, Changyeop;Yoo, Miyeon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.29-38
    • /
    • 2020
  • It is practically difficult to accurately measure the temperature and concentration of a large combustion systems at industrial sites in real time. Temperature measurement using thermocouple, which are mainly used, is a point-measuring method that is less accurate and less reliable to analyze the wide area range of inner combustion system, and has limitations to internal accessibility. In terms of concentration analysis, most measurement methods use sampling method, which are limited by the difficulty of real-time measurement. As a way to overcome these limitations, laser-based measurement methods have been developed continuously. Laser-based measurement are line-average measurement methods with high representation and precision, which are beneficial for the application of large combustion systems. In this study the temperature and concentration were measured in real time by water vapor and oxygen generated during combustion using Tunable Diode Laser Absorption Spectroscopy (TDLAS). The results showed that the average temperature inside the combustion system was 1330℃ and the mean oxygen concentration was 3.3 %, which showed similar tendency with plant monitoring data.