• Title/Summary/Keyword: 열전달 경계조건

Search Result 105, Processing Time 0.022 seconds

A Study of Hygroscopic Moisture Diffusion Analysis in Multimaterial System (이종 소재 접합체의 흡습 질량 확산 해석)

  • Kim, Yong-Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.11-15
    • /
    • 2011
  • Heat transfer equation is first reviewed and then governing equation of moisture diffusion. Analogy scheme is applied to analysis the moisture absorption problem of polymers. It make possible to numerically analyze the diffusion problem for single medium by using commercial finite element code if it is under the isothermal loading condition. It is extended to special multimaterial system by introducing pressure ratio function, whose moisture characteristics of materials are proportional to temperature only. The weight changes of silicon-nonconductive-polymer joint model due to moisture absorption is measured and been very close to the numerical results as for single media with boundary condition with zero concentration, but yields numerical errors as for multisystem media.

A Study on Boundary Conditions of Piston Thermal Loading Analysis in Internal Combustion Engines (내연기관 피스톤의 열부하 해석을 위한 경제조건 설정에 관한 연구)

  • 정동수;조용석;최헌오;이진형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.528-533
    • /
    • 1988
  • The assignment of boundary conditions for the piston thermal loading analysis in internal combustion engine has been tested using the thermal circuit method with an engine simulation program. In an attempt to examine the accuracy of the employed boundary condition, another thermal boundary condition has been sought for through the electrolytic tank analogue method. Comparison of calculated temperature distributions obtained from these two boundary conditions with measured temperature values reveals that the electrolytic tank analogue method gives excellent agreement. However, the thermal circuit method has been found to be reasonable for practical applications, if modified partially.

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.521-528
    • /
    • 2017
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, which is used for solid rocket nozzle liner or insulator, was conducted. 1-D Finite Difference Method for the analysis of silica/phenolic during the firing of solid rocket motor was used to calculate the heat conduction considering the surface ablation and the thermal decomposition. The boundary condition at the nozzle wall took into account the convective heat transfer, which was obtained by integration equation. The numerical results of the surface ablation and char depth were compared with the results of test motor that is TPEM-10. It was found that the result of calculation is favorably agreed with the thermal response of test motor.

  • PDF

Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor (고체 로켓 추진기관에서 실리카/페놀릭 열반응 해석 연구)

  • Seo, Sangkyu;Hahm, Heecheol;Kang, Yoongoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.76-84
    • /
    • 2018
  • In this paper, the numerical analysis for heat conduction of silica/phenolic composite material, used for solid rocket nozzle liners or insulators, is conducted. A 1-dimensional finite difference method for the analysis of silica/phenolic during the firing of a solid rocket motor is used to calculate heat conduction, considering surface ablation and thermal decomposition. The boundary condition at the nozzle wall, considering the convective heat transfer, is obtained via integration equations. The numerical results of the surface ablation and char depth are compared with the results of a TPEM-10 test motor, finding that the result of calculation agrees with the thermal response of the test motor.

The Effect of Impact Velocity on Droplet-wall Collision Heat Transfer Above the Leidenfrost Point Temperature (Leidenfrost 지점 온도 이상에서 액적-벽면 충돌 열전달에 대한 충돌 속도의 영향)

  • Park, Jun-seok;Kim, Hyungdae;Bae, Sung-won;Kim, Kyung Doo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.567-578
    • /
    • 2015
  • Single droplet-wall collision heat transfer characteristics on a heated plate above Leidenfrost temperature were experimentally investigated considering the effects of impact velocity. The collision characteristics of the droplet impinged on the heated wall and the changes in temperature distribution were simultaneously measured using synchronized high-speed video and infrared cameras. The surface heat flux distribution was obtained by solving the three-dimensional transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition for the collision surface. As the normal impact velocity increased, heat transfer effectiveness increased because of an increase in the maximum spreading diameter and a decrease in the vapor film thickness between the droplet and heated wall. For We < 30, droplets stably rebounded from a heated wall without breakup. However, the droplets broke up into small droplets for We > 30. The tendency of the heat transfer to increase with increasing impact velocity was degraded by the transition from the rebounding region to the breakup region; this was resulted from the reduction in the effective heat transfer area enlargement due to the breakup phenomenon.

Numerical analysis of natural convection from a horizontal isothermal surface immersed in water near its density extremum (최대밀도점 부근의 물속에 잠겨있는 수평등온도면에 의하여 야기되는 자연대류의 수치해석)

  • 김병하;조승환;유갑종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.197-206
    • /
    • 1990
  • Numerical results of heat transfer from a horizontal isothermal surface are presented for wall temperature T$_{w}$ = 0 .deg. C and ambient water temperature, T$_{\infty}$, from 1 .deg. C to 15 .deg. C. They include streamlines, temperature profiles, local heat transfer coefficients and average Nusselt numbers for the entire flow fields. For a upward-facing horizontal isothermal surface, the results show steady two dimensional flow regimes for T$_{\infty}$ .leg. 4.4 .deg. C, but no solution was obtained above T$_{\infty}$ = 4.4 .deg. C. For a downward-facing horizontal isothermal surface, the flow regimes are steady two dimensional flow for T$_{\infty}$ .geq. 4.9 .deg. C, and the numerical calculation was failed below this ambient water temperature. The mean Nusselt number has its maximum value at about T$_{\infty}$ = 3.4 .deg. C for upward-facing horizontal isothermal surface. For the case of downward-facing horizontal isothermal surface, the mean Nusselt number increases as the ambient water temperature increases.es.s.s.

Experimental Study on the Natural Convective Heat Transfer Characteristics of Ferrofluid for Concentric Annuli under Rotating Magnetic Field (회전수 및 자기장강도 변화에 따른 이중원관내 자성유체의 자연대류 열전달 특성에 관한 실험적 연구)

  • Kim, Hyung-Jin;Seo, Jae-Hyeong;Kim, Dae-Wan;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.77-81
    • /
    • 2013
  • The objective of this study is experimentally to investigate natural convective heat transfer characteristics of the ferrofluid for a concentric annuli under rotating magnetic field with variations of the revolution and the magnetic field strength. The rotating magnetic field was provided by induction motor with 6 poles and 3 phases and the revolution and the magnetic field strength were controlled by an inverter driver and a voltage meter, respectively. Temperatures of the inner pipe and the outer pipe in the tested concentric annuli were maintained at $30^{\circ}C$ and $25^{\circ}C$, respectively, during the test and the direction of the rotating magnetic field was a counterclockwise. As a result, the natural convective heat transfer characteristics of the ferrofluid for a concentric annuli were increased with the rise of the revolution and magnetic field strength due to the increased heat dissipation between hot side and cold side of the concentric annuli.

A Study on Heat Transfer Characteristics according to Thermal Hydrolysis Reaction of Poultry Slaughter Waste (도계폐기물의 열가수분해 반응에 따른 열전달 특성 연구)

  • Song, Hyoung Woon;Jung, Hee Suk;Kim, Choong Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.95-103
    • /
    • 2015
  • The purpose of this study was performed to quantitatively measure the thermal conductivity of poultry slaughter waste with variation of reaction temperature for optimal design of thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dehydrated sludge related to the reaction temperature. As the reaction temperature increased, the dehydrated sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bond water in the sludge cells comes out as free water, which changes the dehydrated sludge from a solid phase to slurry of a liquid phase. As a result, the thermal conductivity of the its sludge was more than 2.11 times lower than that of the water at $20^{\circ}C$. However, the thermal conductivity of the sludge approached to $0.677W/m{\cdot}^{\circ}C$ of water at $200^{\circ}C$, experimentally substantiating liquefaction of the dehydrated sludge. Therefore, we confirmed that the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. And the thermal conductivity function related to reaction temperature was derived to give the boundary condition for the optimal design of the thermal hydrolysis reactor. The consistency of the calculated function was 99.69%.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

Analysis of Three-Dimensional Mixed Convection Flow About Uniformly Distributed Heat-Generating Blocks on a Conductive Wall (기판 위에 분포된 발열블록 주위의 3차원 혼합대류 열전달 해석)

  • Yun, Byeong-Taek;Choi, Do Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • The three-dimensional laminar mixed convection flow between the conductive printed circuit boards. on which the heat generating rectangular blocks are uniformly distributed, has been examined in the present study. The flow and heat-transfer characteristics are assumed to be pseudo periodic in the streamwise direction and symmetric in the cross-stream direction. Using an algorithm of SIMPLER, the continuity equation. the Navier-Stokes equations and the energy equation are solved numerically in the three-dimensional domain Inside the channel. The convective derivative terms are discretized by the QUICK scheme to accurately capture the flow field. The flow and the heat transfer characteristics are thoroughly examined for various Re and Gr.