• Title/Summary/Keyword: 열전달 경계조건

Search Result 105, Processing Time 0.026 seconds

Natural convection heat transfer from a hot body in the square enclosure with different boundary conditions (다른 경계조건을 갖는 밀폐공간 내에 존재하는 고온부로부터의 자연대류 열전달)

  • 권순석;정태현;권용일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2395-2406
    • /
    • 1992
  • Laminar natural convection heat transfer from a hot body in a square enclosure has been studied for various center positions of a hot body at Grashof number Gr=1.5$\times$10/sup 5/, Prandtl number Pr=0.71 and dimensionless thermal conductivity K/sub s//K/sub f/= 14710. In case of vertical cold walls, the natural convection at the dimensionless center position of a hot body, X/sub c/Y/sub c/=0.2, 0.5 shows the most strong and at X/sub c/, Y/sub c/=0.5, 0.8 the most weak. In case of horizontal cold walls, the natural convection at the dimensionless center position of a hot body ; X/sub c/ Y/sub c/=0.5, 0.2 shows the most strong and at X/sub c/, Y/sub c/=0.2, 0.5 the most weak.

A Study on the Unsteady Temperature Characteristics at the Refrigerator Gasket Region (냉장고 가스켓 주위의 시간에 따른 온도변동 특성에 관한 연구)

  • Ha, Ji Soo
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.138-143
    • /
    • 2012
  • The present study has been carried out to elucidate the unsteady temperature characteristics of a refrigerator near gasket region by measuring time dependent temperature measurements. From the measured values of the time dependent temperature inside and outside region of a refrigerator, one could see that the temperature varies periodically with time from the effect of refrigerator operation. The measured mean temperatures at the wall had great different value from the previous other research results conducted by numeric ofheat transfer using improperfheat transfer boundary condition. The present study could give the experiment ofdata for the properfnumeric ofheat transfer an oysis and suggest more accuratefheat transfer boundary conditions for the inside and outside of a refrigerator.

Numerical Modeling of Heat Transfer Due to Particle Impact on a Wall (벽면에서의 입자 고찰에 의한 열전달 수치 모델)

  • 권오붕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.3
    • /
    • pp.296-305
    • /
    • 1995
  • A numerical study was undertaken to clarify the mechanisms of heat transfer in fluid-particle suspension flows. Such flows, including fluidization, are of considerable industrial importance. The present study uses 2-D numerical computations of collisions of normal incidence between a particle and a wall. By comparing the results using (a) adiabatic boundary conditions on the particle and (b) uniform, elevated temperature conditions on the particle, the contributions of fluid-mediated conduction and particle induced convection were successfully separated. Computational expedience led to the use of a transient conduction thermal layer as the background thermal field for the analysis. The results shows that the effect of particle movement is very small until the particle reaches a distance of one to one half diameter away from the wall. The gas-mediated conduction effect is dominant over the induced gas convection effect when Pe is small and the induced gas convection effect becomes significant as Pe increases.

  • PDF

Measuring Convective Heat Transfer Coefficient of Nanofluids Considering Effect of Film Temperature Change over Heated Fine Wire (막온도 변화를 고려한 가는 열선주위 나노유체의 대류열전달계수 측정 실험)

  • Lee, Shinpyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.725-732
    • /
    • 2013
  • This study examined the convective heat transfer characteristics of nanofluids flowing over a heated fine wire. Convective heat transfer coefficients were measured for four different nano-engine-oil samples under three different temperature boundary conditions, i.e., both or either variation of wire and fluid temperature and constant film temperature. Experimental investigations that the increase in the convective heat transfer coefficients of nanofluids in the internal pipe flow often exceeded the increase in thermal conductivity were recently published; however, the current study did not confirm these results. Analyzing the behavior of the convective heat transfer coefficient under various temperature conditions was a useful tool to explain the relation between the thermal conductivity and the boundary layer thickness of nanofluids.

Finite Element Analysis of Temperature Distribution for Power Transformer (유한요소법을 이용한 전력용변압기의 온도분포해석)

  • Ahn, Hyun-Mo;Hahn, Sung-Chin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.818_819
    • /
    • 2009
  • 본 논문에서는 온도상승의 열원이 되는 권선과 철심의 전력손실을 유한요소법을 이용한 전자계해석과 스타인메츠실험식으로 산정하였다. 온도에 대한 자연대류 열전달계수를 산정하여 경계면에서의 경계조건으로 적용하였다. 열전달 해석을 위해 전력용변압기를 3차원 형상으로 모델링한 후 유한요소법을 이용해 권선과 철심에서의 온도분포를 해석하였다.

  • PDF

Comparison of Numerical Methods on Heat Transfer in a Rod with Second Order-Boundary Value Problem (이차 경계문제를 가지는 봉의 열전달에 대한 수치해석적 비교)

  • Kim, M.J.;Chea, G.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.5-9
    • /
    • 2010
  • 본 연구는 수정 오일러 법칙을 이용한 봉의 열전달문제를 엄밀해와 수치해를 수치해석적 해법을 이용해 비교한 것이다. 경계조건으로는 열전도 및 대류가 동시에 존재하는 경우의 모델을 가정하여 계산하였고, 봉의 길이가 원주방향에 비해 상당히 길다고 가정하여 1차원으로 지배방정식을 정리하여 2차 상미분방정식을 유도하여 계산을 수행하였다. 계산을 수행한 결과 적절한 초기 추측값인 ${\beta}$값을 정의하면 오일러의 방정식으로도 충분히 만족할만한 결과를 얻을 수 있다는 것을 알았고, 지수함수 형태의 유도 상관식이 엄밀해와 ${\pm}1%$ 범위 내에서 일치한다는 결과를 얻었다.

Analysis of Temperature Distribution of Solid and Gas in the Rotary Cooler (회전냉각기에서 고체와 가스의 온도분포해석)

  • 이만승;최주석;전철근
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.25-30
    • /
    • 2002
  • Heat transfer occurring in the rotary cooler was analyzed by applying a one-dimensional steady state. The temperature of inlet gas and the measured temperature of outlet gas were used as boundary conditions. Axial temperature distribution of solid, gas and wall were calculated by solving two differential equations and two algebraic equations under the constraint of two point boundary conditions and operating conditions. The temperatures of outer wall calculated in this study were in good agreement with those measured from running rotary cooler.

Assessment of Surface Boundary Conditions for Predicting Ground Temperature Distribution (지중온도 변화 예측을 위한 지표면 경계조건 검토)

  • Jang, Changkyu;Choi, Changho;Lee, Chulho;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.75-84
    • /
    • 2013
  • Soil freezing is a phenomenon arising due to temperature difference between atmosphere and ground, and physical properties of soils vary upon the phase change of soil void from liquid to solid (ice). A heat-transfer mechanism for this case can be explained by the conduction in soil layers and the convection on ground surface. Accordingly, the evaluation of proper thermal properties of soils and the convective condition of ground surface is an important task for understanding freezing phenomenon. To describe convection on ground surface, simplified coefficient methods can be applied to deal with various conditions, such as atmospheric temperature, surface vegetation conditions, and soil constituents. In this study, two methods such as n-factor and convection coefficient for the convective ground surface boundary were applied within a commercial numerical program (TEMP/W) for modeling soil freezing phenomenon. Furthermore, the numerical results were compared to laboratory testing results. In the series of the comparison results, the convection coefficient is more appropriate than n-factor method to model the convective boundary condition.

Thermal Influential Factors of Energy Pile (에너지 파일의 열적거동 인자분석)

  • Jeong, Sang-Seom;Song, Jin-Young;Min, Hye-Sun;Lee, Sung-June
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.231-239
    • /
    • 2010
  • This paper presents the thermal conduction analysis (using ABAQUS ver 6.10 and FLUENT ver 6.3.26) of geothermal energy for PHC, steel and copper energy piles by considering subsurface environment, thermal efficiency of grouting materials, and fluid velocity of circulating fluid. Results show that higher thermal efficiency for copper pile is observed followed by steel and PHC piles depending on the grouting materials and subsurface condition. The fluid velocity of 0.6m/s presents most efficient outflow temperature (275.4K) and heat exchange rate (103.1W/m) for the case of PHC pile during 8 hours operation. Analysis of operation schedule concludes that 16 hours of stand-by allows charging geothermal energy following 8 hours operation in winter season is most appropriate with 0.1K of temperature difference from the steady-state condition.

Shape optimal design of a 2-D heat transfer system with the isoparametric finite element (等係數 유한요소를 사용한 2차원 열전달시스템의 형상 최적설계)

  • 유영면;박찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.82-87
    • /
    • 1987
  • In this study a method of shape optimization is applied to two dimensional heat transfer system. For this the optimization problem is defined in a functional form including cost, constraints and the system governing equation. Then the material derivative concept in continuum mechanics and the adjoint variable method are employed for the shape design sensitivity analysis. With the sensitivity analysis results, an optimum is sought with the gradient projection optimization algorithm. The two dimensional isoparametric finite elements are used for accurate analysis and sensitivity calculations. The above method is employed to find the boundary shape to achieve a desired temperature distribution along a segment of the boundary subject to the maximum area constraint.