• Title/Summary/Keyword: 열전계수

Search Result 1,181, Processing Time 0.025 seconds

Condensation Heat Transfer Characteristics of Hydrocarbon Refrigerants in Horizontal Tubes of 7.73 mm and 5.80 mm (7.73 mm와 5.80 mm 수평관내 탄화수소 냉매의 응축 열전달 특성)

  • Son, Chang-Hyo
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.4
    • /
    • pp.331-339
    • /
    • 2008
  • 본 논문은 내경 7.73 mm와 5.80mm의 수평관내 프레온계 냉매 R-22와 탄화수소계 냉매 R-290과 600a의 응축 열전달 계수의 실험적 결과를 나타내었다. 실험장치는 압축기, 응축기, 팽창밸브, 증발기 등으로 구성된다. 응축 실험은 질량유속 $35.5{\sim}210.4\;kg/m^2s$이고, 응축온도 40$^{\circ}C$인 조건에서 수행하였다. 주요 결과를 요약하면 다음과 같다. 탄화수소계 냉매 R-290과 R-600a의 평균 열전달 계수는 프레온계 냉매 R-22보다 높게 나타났으며, R-600a의 평균 열전달 계수가 모든 관경에 대해 가장 높게 나타났다. 실험결과와 종래의 상관식을 비교한 결과, 모든 관경과 냉매에 대해 Haraguchi 등의 상관식이 가장 좋은 일치를 보였다. 그 중에서 Cavallini-Zecchin의 상관식은 7.73 mm 관경의 실험데이터와, Dobson 등의 상관식은 내경 5.80 mm 관경의 데이터와 좋은 일치를 보였다.

Measuring Convective Heat Transfer Coefficients of Nanofluids over a Circular Fine Wire Maintaining a Constant Temperature (등온으로 유지되는 가는 열선주위를 흐르는 나노유체의 대류열전달계수 측정실험)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • This paper describes a measuring apparatus that can be used to appraise the effectiveness of nanofluids as new heat-transfer-enhancing fluids. A couple of apparatuses using fine hot wires as sensors have been proposed for this purpose; however, they have a technical weakness related to the uncertain working conditions of the sensor. The present method uses the convective heat transfer coefficient from a hot wire as an indication of the heat transfer effectiveness of the nanofluid, where the temperature of the wire remains constant during the experiment. The operating principle and experimental procedure are explained in detail, and the validity of the system is tested with pure base fluids. The effects of particle concentration, velocity, and temperature on the heat transfer coefficients of the nanofluids are discussed comprehensively using the experimental data for graphite nanolubrication oil.

Boiling heat transfer characteristics of FC-72 in parallel micro-channels (병렬 마이크로 채널에서 FC-72의 비등 열전달 특성)

  • Choi, Yong-Seok;Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1032-1038
    • /
    • 2014
  • In this study, an experimental study was performed to understand the boiling heat transfer characteristics of FC-72 in parallel micro-channels. The parallel micro-channels contained channels having a $0.2mm{\times}0.45mm$ [$H{\times}W$] cross section and length of 60 mm. And heat flux was varied from 16.4 to $25.6kW/m^2$ and mass fluxes from 300 to $500kg/m^2s$. The measured heat transfer coefficient was sharply decreased at lower vapor quality and then it was kept approximately constant as the vapor quality is increased. From the experimental results, the boiling heat transfer mechanism of FC-72 was confirmed and the measured heat transfer coefficient was compared and analyzed with the existing correlations to predict the heat transfer coefficient.

Experimental Study on Heat Transfer Characteristics of Ice Slurry at Direct Transportation Loop (직접 수송 루프에서 아이스슬러리의 열전달 특성에 관한 실험적 연구)

  • Lee, Dong-Won;Kim, Jeong-Bae
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.234-239
    • /
    • 2010
  • Heat transfer characteristics were experimentally investigated for ice slurry which was made from 6.5% ethylene glycol-water solution flowing in the circular pipe. The test section was made of a copper tube of 13.84 mm inner diameter and 1,500 mm length. The ice slurry was heated by passing hot water through an annulus surrounding the test section. The ice packing factor(IPF) and the mass flux of the experiments were varied from 0 to 25% and from 1,000 to 3,000 kg/$m^2s$ respectively at a fixed hot water temperature and flow rate. The measured heat transfer rates increase with the mass flow rate and IPF; however the effect of IPF appears to be minor at high mass flow rate. At the low mass flow rate condition, a sharp increases in the heat transfer coefficient was observed when the IPF was above 15 ~ 20%. And finally the measured heat transfer coefficients were compared with those calculated from the correlations.

Experimental Investigation of Steam Condensation Heat Transfer in the Presence of Noncondensable Gas on a Vertical Tube (수직 튜브 외벽에서의 증기-비응축성 기체 응축 열전달 실험 연구)

  • Lee, Yeon-Gun;Jang, Yeong-Jun;Choi, Dong-Jae;Kim, Sin
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2015
  • To evaluate the heat removal capability of a condenser tube in the PCCS of an advanced nuclear power plant, a steam condensation experiment in the presence of noncondensable gas on a vertical tube is performed. The average heat transfer coefficient is measured on a vertical tube of 40 mm in O.D. and 1.0 m in length. The experiments covers the pressures of 2-4 bar, and the mass fraction of air ranges from 0.1 up to 0.7. From the experimental results, the effects of the total pressure and the concentration of air on the condensation heat transfer coefficient are investigated. The measured data are compared with the predictions by Uchida's and Tagami's correlations, and it is revealed that these models underestimate the condensation heat transfer coefficient of the steam-air mixture.

Accurate Measurement of the Thermal Conductivity of Electronic Materials Using the Flash Method (섬광법을 이용한 전자재료의 열전도율 정밀측정)

  • Kim, Seog-Kwang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.9-9
    • /
    • 2008
  • 일반적으로 섬광법으로 열전도율을 구하기 위해서는 섬광법으로 열확산계수를 측정하고, 시차주사열량계(Differential Scanning Calorimetry, DSC)로 비열측정을 하며 아르키메데스의 원리를 이용한 용적밀도를 구하여 이들 각각의 값을 사용하여 열전도율을 얻는다. 따라서 열전도율을 정밀하게 측정하기 위해서는 이 세 가지 물성치를 측정할 때 수반되는 오차요인을 종합적으로 검토하여 개선하는 것이 매우 중요하다. 섬광법으로 열확산계수를 측정할 때 시료의 전면에 조사되는 빛의 흡수율을 향상시키고 배면에서의 온도상승의 감지를 증대할 목적으로 시료 양면에 흑연코팅을 하게 된다. 이때 코팅된 흑연이 시료에 부가적으로 열저항을 증가시켜서 열확산계수를 측정하는데 가장 큰 오차요인이 되고 있다. 한편 비열은 대부분 DSC로 측정하는데, 시료와 용기의 열접촉 정도에 따라 큰 오차요인이 되기도 한다. 본 연구에서는 열확산계수를 정밀하게 측정하기 위해서 시료에 부가적인 열저항으로 작용하는 흑연코팅의 두께와 시료배면에서의 온도상승곡선 간의 상관관계를 실험식으로 도출하였으며 이방법은 열확산계수를 정밀하게 측정하는데 매우 유효한 방법임이 입증되었다. 또한 DSC의 접촉에서의 문제점을 해결하기 위해서 시료배면에서의 무차원 시간축(t/$t_{max}$)을 도입하였으며. 무차원 시간축에 따른 온도상승 곡선에서 표준시료와 측정시료의 half time($t_{1/2}$)의 0.5 배와 1.5배 사이 구간을 적분한 뒤 비교하여 열량계산으로부터 비열을 구하는 방법을 새롭게 개발하였으며 기존의 DSC에 비하여 정밀도를 향상시킬 수 있었다. 결론적으로 새롭게 제안된 측정기법들은 열확산계수 및 비열 혹정 시의 근본적인 오차요인을 혁신적으로 해결함으로써 정밀하고 신뢰성 있는 열전도율을 측정할 수 있음을 입증할 수 있었다.

  • PDF

Analysis of Thermal Conductivities of Carbon/Phenolic and Silica/Phenolic Ablative Composites by Laser Pulse Method (레이저 섬광법을 이용한 Carbon/Phenolic 및 Silica/Phenolic 내열복합재료의 열전도도 분석)

  • Kim, H.Y.;Kim, P.W.;Hong, S.H.;Kim, Y.C.;Yeh, B.H.;Jung, B
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.75-83
    • /
    • 1999
  • The thermal properties of carbon/phenolic and silica/phenolic ablative composites were investigated by measuring the heat capacity, thermal diffusivity and thermal conductivity. The heat capacities of carbon/ phenolic and silica/phenolic composites were calculated from differential scanning calorimeter curve. The thermal diffusivities of carbon/phenolic and silica/phenolic composites were measured by the laser flash method with varying laminated direction, i.e., with laminar direction and across laminar direction. The thermal diffusivities decreased with increasing temperature. The thermal conductivities of carbon/phenolic and silica/phenolic composites were calculated using the heat capacity, density and thermal diffusivity. The thermal conductivities increased with increasing temperature. The thermal conductivity of with laminar direction is two times higher than that of across-laminar direction in carbon/phenolic composite due to the directionality of thermal conductivity of carbon fiber. The thermal conductivities of two dimensional fiber reinforced composites were analyzed using the conductivities of constituents and volume fraction of each constituent. The thermal conductivities of carbon fiber and silica fiber were calculated from thermal conductivities of carbon/phenolic and silica/phenolic composites. The thermal conductivities of carbon/phenolic and silica/phenolic composites at RT were predicted from thermal conductivities of fiber and resin with varying the volume fraction of fiber.

  • PDF

Effect of Groove Shape of Blade Tip on Tip Surface Heat Transfer Coefficient Distributions of a Turbine Cascade (블레이드 팁의 Groove 형상이 터빈 캐스케이드 팁 열전달 계수분포에 미치는 영향에 대한 실험적 연구)

  • Nho, Young-Cheol;Jo, Yong-Hwa;Lee, Yong-Jin;Kim, Hark-Bong;Kwak, Jae-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.60-68
    • /
    • 2010
  • In this study, the conventional plane tip, double squealer tip, and various groove tip blades were tested in a linear cascade in order to measure the effect of the tip shapes on tip surface heat transfer coefficient distributions. Detailed heat transfer coefficient distributions were measured using a hue-detection based transient liquid crystals technique. Two tip gap clearances of 1.5% and 2.3% of blade span were investigated and the Reynolds number based on cascade exit velocity and chord length was $2.48{\times}10^5$. Results showed that the overall heat transfer coefficients on the tip surface with various grooved tips were lower than those with plane tip blade. The overall heat transfer coefficient on grooved along suction side tip was lower than that on the squealer tip.

Effect of Groove Shape of Blade Tip on Tip Surface Heat Transfer Coefficient Distributions of a Turbine Cascade (블레이드 팁의 Groove 형상이 터빈 캐스케이드 팁 열전달 계수분포에 미치는 영향에 대한 실험적 연구)

  • Nho, Young-Cheol;Jo, Yong-Hwa;Lee, Youn-Jin;Kim, Hark-Bong;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.311-318
    • /
    • 2010
  • In this study, the conventional plane tip, double squealer tip, and various groove tip blades were tested in a linear cascade in order to measure the effect of the tip shapes on tip surface heat transfer coefficient distributions. Detailed heat transfer coefficient distributions were measured using a hue-detection based transient liquid crystals technique. Two tip gap clearances of 1.5% and 2.3% of blade span were investigated and the Reynolds number based on cascade exit velocity and chord length was $2.48{\times}10^5$. Results showed that the overall heat transfer coefficients on the tip surface with various grooved tips were lower than those with plane tip blade. The overall heat transfer coefficient on grooved along suction side tip was lower than that on the squealer tip.

  • PDF

A New Structural Model for Predicting Effective Thermal Conductivity of Variably Saturated Porous Materials (포화도에 따른 다공성 매질의 유효열전도도 변화 예측 모델)

  • Cha, Jang-Hwan;Koo, Min-Ho;Keehm, Young-Seuk
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.629-639
    • /
    • 2011
  • Based on Maxwell-Eucken(ME) model, which is one of structural models, a new model for predicting the effective thermal conductivity of variably saturated porous materials is proposed. The new model is a linear combination of three ME models having matrix, water, and air as a continuous phase. The coefficient of the corresponding linear equation is defined by a parameter referred to as 'the continuity coefficient', which provides a relative degree of continuity of each phase. The continuity coefficient of matrix is assumed to be linearly proportional to porosity. The model can be linear or nonlinear depending on how the continuity coefficients of water and air vary with water saturation. The feasibility of the proposed model was examined by both numerical and experimental results. Both linear and nonlinear models showed a high accuracy of prediction with $R^2$ values of 0.86-0.98 and 0.88-0.99, respectively. The numerical and experimental results also showed that the continuity coefficient of matrix was linearly proportional to porosity. Therefore, the proposed prediction model can be effectively used to estimate effective thermal conductivity of unsaturated porous materials by measuring porosity, water content and mineralogical compositions of matrix.