• Title/Summary/Keyword: 열적설계

Search Result 377, Processing Time 0.031 seconds

Analytical Study on the Fire Resistance of iTECH Composite Beam (iTECH 합성보의 내화성능에 대한 해석연구)

  • Lim, Yoon Hee;Kang, Seong Deok;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.655-664
    • /
    • 2006
  • The purpose of thisanalytical study of an iTECH composite beam subjected to fire conditions is to determine the beam's fire resistance performance using its load ratio and fire protection as parameters. A composite structural system is expected to have a safer and more economical fire safety design than a mere collection of isolated members.heat transfer analysis was performed on the basis of the finite element program ANSYS 10.0 using an ISO834 standard fire, following the main guidelines proposed by EC1 Part 2.2 and EC4 Part 1.2. To validate the analytical simulation of the iTECH composite beam, comparison of the experimental tests was proposed.

A design of silicon based vertical interconnect for 3D MEMS devices under the consideration of thermal stress (3D MEMS 소자에 적합한 열적 응력을 고려한 수직 접속 구조의 설계)

  • Jeong, Jin-Woo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Vertical interconnection scheme using novel silicon-through-via for 3D MEMS devices or stacked package is proposed and fabricated to demonstrate its feasibility. The suggested silicon-through-via replaces electroplated copper, which is used as an interconnecting material in conventional through-via, with doped silicon. Adoption of doped silicon instead of metal eliminates thermal-mismatch-induced stress, which can make troubles in high temperature MEMS processes, such as wafer bonding and LP-CVD(low pressure chemical vapor deposition). Two silicon layers of $30{\mu}m$ thickness are stacked on the substrate. The through-via arrays with spacing $40{\mu}m$ and $50{\mu}m$ are fabricated successfully. Electrical characteristics of the through-via are measured and analyzed. The measured resistance of the silicon-through-via is $169.9\Omega$.

Method for Determining Fiber Volume Fraction in Carbon/Epoxy Composites Considering Oxidation of Carbon Fiber (탄소섬유 산화 현상을 고려한 탄소복합재료의 섬유체적비 측정법)

  • Kim, YunHo;Kumar, Sathish;Choi, Chunghyeon;Kim, Chun-Gon;Kim, Sun-Won;Lim, Jae Hyuk
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.311-315
    • /
    • 2015
  • Measuring fiber volume fraction properly is very important in designing composite materials because the fiber volume fraction mainly determines mechanical and thermal properties. Conventional Ignition methods are effective for ceramic fiber reinforcing composite materials. However, these methods are not proper for applying to carbon fiber reinforcing composites because of the venerable characteristic against oxidation of carbon fiber. In the research, fiber volume fraction of carbon fiber composites was obtained by a thermogravimetric analysis considering oxidation characteristic of the carbon fiber and the method was compared and verified with the results from microscopic cross section images.

Wear Properties of Nuclear Graphite IG-110 at Elevated Temperature (원자력용 흑연 IG-110 에 대한 고온 마모 특성 평가)

  • Wei, Dunkun;Kim, Jaehoon;Kim, Yeonwook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.469-474
    • /
    • 2014
  • The high temperature gas-cooled reactor (HTR-10) is designed to produce electricity and hydrogen. Graphite is used as reflector, support structures, and a moderator in reactor core; it has good resistance to neutron and is a suitable material at high temperatures. Friction is generated in the graphite structures for the core reflector, support structures, and moderator because of vibration from the HTR-10 fuel cycle flow. In this study, the wear characteristics of the isotropic graphite IG-110 used in HTR-10 were evaluated. The reciprocating wear test was carried out for graphite against graphite. The effects of changes in the contact load and sliding speeds at room temperature and $400^{\circ}C$ on the coefficient of friction and specific wear rate were evaluated. The wear behavior of graphite IG-110 was evaluated based on the wear surfaces.

A Study on Alternative Fan Selection and Verification in Military Electronic Equipment (방산용 전자장비의 팬 선정 및 검증에 관한 연구)

  • Jin, Sung Eun;Kim, Hwan Gu;Yoon, Eui Youl;Jeon, Hee Ho;Kim, Seung Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1091-1097
    • /
    • 2017
  • Sales of commercial-type cooling fans intended for application in military electronics are often discontinued during equipment production. This results in requirements for alternative fan selection as well as equipment performance and reliability tests, such as high-temperature operation testing. This study deals with alternative fan selection and verification methods that can be used during the production process. First, an alternative fan was selected by calculating the flow and pressure required to effectively cool the equipment, then the feasibility of the selected fan was verified using a reliable CFD heat dissipation analysis model. Following this, a high-temperature operation test was performed using the alternative fan in the equipment. Results demonstrated that the equipment satisfied its required function in a high-temperature environment, and the main parts as well as internal air temperature were found to be thermally stable.

Design Verification of Environmental Control System by Flow Balance Test (유량평형시험을 통한 환경제어계통 설계 검증)

  • Park, Dong-Myung;Joung, Yong-In;Moon, Woo-Yong;Park, Sung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.608-615
    • /
    • 2012
  • In this study, we analyzed the system impedance of Unmanned Aerial Vehicle avionics bay and Environmental Control System(ECS), and estimated the proper air flow rate to be supplied avionics equipments. As the result of estimation, we evaluated the performance of ECS after analysing the flow balance rate and the air flow rate about each outlet port, and simultaneously decided the flow balance rate after evaluating the thermal substantiality by the thermal analysis of avionics bay. In order to verify the property of analysis result, we conducted the flow balance test using the actual avionics equipments and finally deduced the flow rate to be met system requirements of avionics equipments. Also, as the analysis results, we verified the satisfaction of system requirements at midium altitude condition and proved the performance characteristics of an Environmental Control System(ECS).

Investigation of Natural Convective Heat Flow Characteristics of Heat Sink (히트싱크의 자연대류 열유동 특성 분석)

  • Jung, Tae Sung;Kang, Hwan Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • To ensure proper functioning of electrical and mechanical systems, cooling devices are of great importance. A heat sink is the most common cooling device used in many industries such as the semiconductor, electronic instrument, LED lighting, and automotive industries. To design an optimal heat sink, the required surface area for heat radiation should be calculated based on an accurate expectation of the heat flow rate in the target environment. In this study, the convective heat flow characteristics were numerically investigated for a vertically installed typical heat sink and a horizontally installed one in free convection using ANSYS CFX. Comparative experiments were carried out to reveal the quantitative effect of the installation direction on the cooling performance. Moreover, the result was analyzed using the dimensionless correlation with the Nusselt number and Rayleigh number and compared with well-known theories. Finally, it was observed that the cooling performance of the vertically installed heat sink is approximately 10~15% better than that of the one in natural convection.

Synthesis of multicomponent basic materials for the next generation nanocomposite coating (차세대 나노 박막 다원계 모물질 설계, 합성 기술)

  • Sin, Seung-Yong;Mun, Gyeong-Il
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.501-501
    • /
    • 2011
  • 산업이 고도화, 다원화, 세계화되고 있는 현대사회는 다기능성, 고물성, 극한 내구성을 가지며 환경 친화적이면서 에너지 효율을 극대화시킬 수 있는 다기능 소재의 개발을 요구하고 있다. 이러한 시점에서 다양한 물성을 동시에 발현이 가능한 코팅 소재는 향후 미래에 중요한 원천소재로서 주목되고 있다. 특히, 환경에 의해 쉽게 물성 및 구조의 변화가 쉬운 종래의 코팅소재와는 달리, 다양한 외부환경에서도 미세 구조 및 물성을 안정적으로 유지할 수 있는 신개념의 코팅 소재의 개발이 절실히 요구되고 있다. 이를 위해서는 코팅소재의 다 성분화가 필수적이다. 최근의 코팅 기술은 2가지 이상의 물성, 특히 서로 상반되는 물성을 동시에 구현할 수 있는 소재의 개발을 요구하고 있다. 이러한 물성의 구현을 위하여 더 많은 성분으로 구성되며 더욱 복잡한 조직으로 구성된 코팅층에 대한 개발이 필요하다. 본 연구에서 목표로 하는 신 개념의 원천소재기술은 4 성분계 이상의 원료 물질을 단일 타겟으로 제조하여, 단순한 코팅공정으로서 단일 코팅층 내에 다양한 성분상이 10 nm 미만 크기의 나노 결정립/나노 비정질로 구성된 나노 복합 구조로 형성되도록 하는 기술을 개발하고자 하는 것이다. 이는 복합기능 3 이상의 다기능성 부여는 물론, 그림 1에 명시되어 있는 극한 기능성(광대역 윤활성, 전자 이동 제어에 의한 온도 저항 계수 및 전기 저항 조절, 고온 열적 안정성, 내산화성, 고열전도율, 초저마찰/내구성/초고경도성 등)이 구현되도록 하는 소재 개발과 원하는 물성을 구현할 수 있는 나노 복합 코팅층의 형성 공정으로 구성된다. 다성분계 모물질의 개발이 중요한 이유는 다수의 성분 원소를 합금 상태로 형성시킴으로서, 단일 소스에 의해 다양한 원소를 동시에 스퍼터링 및 증착이 가능하도록 할 수 있다는 장점을 가지기 때문이다. 특히, 타겟의 미세구조를 나노구조화 하는것을 통해, 스퍼터링 yield의 차이가 큰 원소일지라도 균일하게 증착시킬 수 있는 방법을 제시하고자한다. 이러한 연구는 다수의 성분 타겟을 사용함으로서 장비의 복잡성, 코팅의 재현성, 대형화 등의 문제점을 본질적으로 갖고 있는 기존 PVD 공정의 문제점을 해결하기 위한 최적의 대안이라할 수 있다. 본 발표에서는 3가지 이상의 다기능성 구현을 위한 가장 중요한 원천기술이라 할 수 있는 다성분계 타겟 모물질 제조 기술에 대해 소개하고자 한다.

  • PDF

A Study on Policy Directions of U-City Planning in Busan using System Dynamics Model (시스템 다이내믹스 모형을 이용한 부산시 U-City 계획의 정책방향 연구)

  • Kim, Byeong Sun;Shin, Dong Bin;Kim, Kirl
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.55-65
    • /
    • 2012
  • The purpose of this study is to construct the System Dynamics Model that can analyze urban spatial and temporal change and suggest the policy directions applicable to U-City Planning in Busan based on the SD model. It reviews previous literatures to elicit U-City issues and performs the case study to simulate urban spatial and temporal changes in Busan. The elicited results are connected into the policy directions of U-City planning. It emphasizes the necessity of business model suggestion based on U-City technology and industry not a tool, the U-City model construction that linkages and integrates the existing cities and new cities, and the excavation of U-City service model reflecting social and demographic changes.

The Manufacturing Process and Characteristic Analysis of BKNO3 Metal-Explosive for PMD (PMD용 BKNO3 금속화약의 제조공정 및 특성분석)

  • Shim, Jungseob;Kim, Sangbaek;Ahn, Gilhwan;Kim, Junhyung;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • This study investigated the manufacturing process and characteristics of $BKNO_3$ (Boron Potassium Nitrate) as a pyrotechnic propellant that is commonly used in the aerospace, defense, and automobile industries. The solid mixture was composed of oxidizing agent, fuel, and binder. Evaporation process was used to uniformly mix the raw materials. The optimal ratio of composition was designed through the CEA program analysis of the material characteristics and thermal responses. Further the size, shape, sensitivity, and calorimetry characteristics were studied.