• 제목/요약/키워드: 열저항 코팅

검색결과 64건 처리시간 0.023초

SnO2 나노 입자를 포함한 poly(methylmethacrylate) 나노복합체를 사용하여 제작한 유기 쌍안정성 소자의 전하 이동 메커니즘

  • 곽진구;윤동열;정재훈;이대욱;김태환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.217-217
    • /
    • 2010
  • 유기물/무기물 나노 복합재료는 고온과 저전력에서 동작해야하는 차세대 전자 소자와 광소자 제작에 대단히 유용한 소재이다. 간단하고 저렴한 제조 방법과 휘어짐이 가능한 특성을 이용하여 유기물/무기물 나노 복합재료를 사용한 비휘발성 메모리 소자의 제작과 메모리 특성에 대한 연구가 수행되었으나, SnO2 나노 입자가 삽입된 고분자 박막을 기반으로 제작한 저항 구조의 비휘발성 메모리 소자인 유기 쌍안정성 소자에 대한 연구는 상대적으로 미흡하다. 본 연구에서는 poly(methyl methacrylate) (PMMA) 박막 안에 분산된 SnO2 나노 입자를 사용하여 제작한 유기 쌍안정성 소자의 메모리 특성을 관찰하였다. 소자를 제작하기 위해 나노 입자의 전구체인 Tin 2-ethylhexanoate을 dibutyl ether에 용해시킨 후, 화학적 방법을 사용하여 용매 안에서 SnO2 나노 입자를 합성하였다. 합성한 SnO2 나노 입자와 PMMA를 클로로벤젠에 용해하여 고분자 용액을 제작하였다. 전극인 indium-tin-oxide가 증착된 유리 기판 위에 제작한 고분자 용액을 스핀 코팅하고, 열을 가해 용매를 제거하여 SnO2 나노 입자가 분산되어 있는 PMMA 나노복합체를 형성하였다. 그 위에 Al 전극을 증착하여 유기 쌍안정성 소자를 완성하였다. 제작된 소자에 전압을 인가하여 전류를 측정한 결과 유기 쌍안정성 소자에서는 동일 전압에서 높은 전류 (ON 상태)와 낮은 전류 (OFF 상태)가 흐르는 쌍안정성 특성을 나타냈다. 그러나 SnO2 나노 입자가 없는 PMMA 박막으로 형성된 소자에서는 전류-전압 측정에서 쌍안정성 특성이 나타나지 않았다. 따라서 PMMA 박막 안에 삽입된 SnO2 나노 입자가 유기 쌍안정성 소자의 메모리 효과를 나타내는 원인임을 알 수 있었다. 전류-시간 측정 결과는 소자의 ON 상태 및 OFF 상태 전류가 시간에 따른 큰 변화 없이 1000 사이클 이상 지속적으로 유지 하고 있음을 보여 줌으로써 유기 쌍안정성 소자를 장시간 사용할 수 있음을 확인시켜 주었다.

  • PDF

Au 스터드 범프 본딩과 Ag 페이스트 본딩으로 연결된 소자의 온도 측정 및 접촉 저항에 관한 연구 (Temperature Measurement and Contact Resistance of Au Stud Bump Bonding and Ag Paste Bonding with Thermal Heater Device)

  • 김득한;유세훈;이창우;이택영
    • 마이크로전자및패키징학회지
    • /
    • 제17권2호
    • /
    • pp.55-61
    • /
    • 2010
  • 탄탈륨실리사이드 히터가 내장된 소자를 Ag 페이스트와 Au SBB(Stud Bump Bonding)를 이용하여 Au가 코팅 된 기판에 각각 접합 하였다. 전단 테스트와 전류를 흐르면서 열 성능을 측정하였다. Au 스터드 범프 본딩의 최적 플립칩 접합조건은 전단 후 파괴면 관찰하여 설정하였으며, 기판 온도를 $350^{\circ}C$, 소자 온도를 $250^{\circ}C$에서 하중을 300 g/bump 로 하여 접합하는 경우가 최적 조건이였다. 히터에 5 W 인가시 소자의 온도는 Ag 페이스트를 이용한 접합의 경우 최대 온도는 약 $50^{\circ}C$이었으며, Au 금속층을 갖고 있는 실리콘 기판에 Au 스터드 본딩으로 접합된 인 경우 약 $64^{\circ}C$를 나타내었다. 기판과의 접촉면적이 와이어본딩과 Au 스터드 범프 본딩 가 약 300배가 차이가 나는 경우 약 $14^{\circ}C$ 차이를 나타내었고, 전사모사를 통하여 접합면의 접촉저항이 중요한 이유임을 알 수 있었다.

R.F. plasma assisted CVD로 합성한 BN, BCN 박막의 물성과 구조 연구

  • 김홍석;백영준;최인훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.114-114
    • /
    • 1999
  • Boron nitride (BN)는 매우 뛰어난 물리적, 화학적 성질을 가지고 있는 재료로 많은 연구가 진행되고 있다. hexagonal 형태의 hBN의 경우 큰 전기 저항과 열 전도도를 가지고 있고 열적 안정성을 가지고 있어 반도체 소자에서 절연층으로 쓰일 수 있다. 또한 X-ray와 가시광선을 투과시키기 때문에 X-ray와 가시광선을 투과시키기 때문에 X-ray lithography이 mask 기판으로 사용될 수 있다. Boron-carbon-nitrogen (BCN) 역시 뛰어난 기계적 성질과 투명성을 가지고 있어 보호 코팅이나 X-ray lithography에 이용될 수 있다. 또한 원자 조성이나 구성을 변화시켜 band gap을 조절할 수 있는 가능성을 가지고 있기 때문에 전기, 광소자의 재료로 이용될 수 있다. 본 연구에서는 여러 합성 조건 변화에 따른 hBN 막의 합성 거동을 관찰하고, 카본 농도변화에 따른 BCN 막의 기계적 성질과 구조의 변화, 그리고 실리콘 첨가에 의한 물성 변화를 관찰하였다. BN박막은 실리콘 (100) 기판 위에 r.f. plasma assisted CVD를 이용하여 합성하였다. 합성 압력 0.015 torr, 원료 가스로 BCl3 1.5 sccm, NH3 6sccm을 Ar 15 sccm을 사용하여 기판 bias (-300~-700V)와 합성온도 (상온~50$0^{\circ}C$)를 변화시켜 BN막을 합성하였다. BCN 박막은 상온에서 기판 bias를 -700V로 고정시킨 후 CH4 공급량과 Ar 가스의 첨가 유무를 변화시켜 합성하였다. 또한 SiH4 가스를 이용하여 실리콘을 함유하는 Si-BCN 막을 합성하였다. 합성된 BN 막의 경우, 기판 bias와 합성 온도가 증가할수록 증착속도는 감소하는 경향을 보여 주었다. 기판 bias와 합성온도에 따른 구조 변화를 SEM과 Xray로 분석하였다. 상온에서 합성한 경우는 표면형상이 비정질 형태를 나타내었고, X-ray peak이 거의 관찰되지 않았다. 합성온도가 증가하게 되면 hBN (100) peak이 나타나게 되고 이것은 합성된 막이 turbostratic BN (tBN) 형태를 가지고 있다는 것을 나타낸다. 50$0^{\circ}C$의 합성 온도에서 기판 bias가 -300V에서 hBN (002) peak이 관찰되었고, -500, -700 V에서는 hBN (100) peak만이 관찰되었다. 따라서 고온에서의 큰 ion bombardment는 합성되는 막의 결정성을 저해하는 요소로 작용한다는 것을 확인 할 수 있었다. 합성된 BN 막은 ball on disk type의 tribometer를 이용하여 마모 거동을 관찰한 결과 대부분 1이상의 매우 큰 friction coefficient를 나타내었고, nano-indenter로 측정한 BN막의 hardness는 매우 soft한 막에서부터 10 GPa 정도 까지의 값을 나타내었고, nano-indenter로 측정한 BN 막의 hardness는 매우 soft한 막에서부터 10GPa 정도 까지의 값을 가지며 변하였다. 합성된 BCN, Si-BCN 막은 FT-IR, Raman, S-ray, TEM 분석을 통하여 그 구조와 합성된 상에 관하여 분석하였다. FT-IR 분석을 통해 B-N 결합과 C-N 결합을 확인할 수 있었고, Raman 분석을 통하여 DLC의 특성을 분석하였다. 마모 거동에서는 BCN 막의 경우 0.6~0.8 정도의 friction coefficient를 나타내었고 Si-BCN 막은 0.3이하의 낮은 friction coefficient를 나타내었다. Hardness는 carbon의 함유량과 Ar 가스의 첨가 유무에 따라 각각을 측정하였고 이것은 BN 막 보다 향상된 값을 나타내었다.

  • PDF

전자빔 증착 열차폐 코팅용 란타늄-가돌리늄 지르코네이트(La2O3-Gd2O3-ZrO2계) 세라믹 잉곳의 제조공정에 따른 열충격 저항성 (Thermal Shock Resistance According to the Manufacturing Process of Lanthanum Gadolinium Zirconate Ceramic Igot for Thermal Barrier Coating by Electron Beam in the La2O3-Gd2O3-ZrO2 System)

  • 최선아;채정민;김성원;이성민;한윤수;김형태;장병국;오윤석
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.465-472
    • /
    • 2017
  • The ingot fabrication conditions related with the thermal shock bearing phase and microstructure have investigated for the rare earth zirconate ceramic material, lanthanum gadolinium zirconate, as a thermal barrier coating using electron beam evaporation method. The thermal shock resistance of the prepared ingot was evaluated by high energy electron beam irradiation. The rare earth zirconate ceramic powder was prepared by controlling the raw material powder composition of $La_2O_3$, $Gd_2O_3$ and $ZrO_2$ so as to have a composition of $(La_{0.3}Gd_{0.7})_2Zr_2O_7$ which was selected from the former study. Ingot samples were prepared under two conditions. The first condition is prepared by sintering the prepared powder mixture to form an ingot. The second condition is prepared by calcining the prepared powder mixture to form a composite phase and then sintering to form an ingot. X-ray diffraction(XRD) and Scanning Electron Microscope(SEM) were used to analyze phase forming behavior and microstructure of ingot samples. Nanoindentation method used to obtain elastic modulus and hardness of each ingot specimen. Also the stress distribution of ingot was simulated by using FEM method assuming the ingot surface was exposed to electron beam. As a results, in the case of an ingot having a network-shaped microstructure in which relatively coarse pores are included, it seems that the thermal shock resistance was higher than in the case of an ingot having a microstructure composed of relatively fine grains only or particles with the similar level size when the high energy electron beam irradiation.