• Title/Summary/Keyword: 열역학 함수

Search Result 92, Processing Time 0.025 seconds

Phase Equilibria in Multicomponent Mixtures using Continuous Thermodynamics (연속열역학을 이용한 다성분 혼합물의 상평형)

  • Yong, Pyeong-Soon;Kim, Ki-Chang;Kwon, Yong Jung
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.267-275
    • /
    • 1998
  • Continuous thermodynamics has been applied for modeling of phase equilibria in multicomponent mixtures, to avoid disadvantages of the pseudo-component and key-component method. In this paper continuous thermodynamic relations formulated by using the Pate-Teja equation of state were adopted for calculations of phase equilibria in natural gas mixtures, crude oil mixtures and mixtures extracted by supercritical $CO_2$ fluids. Calculations of phase equilibria were performed by two procedures ; a moment method coupled with the beta distribution function and a quadrature method combined with Gaussian-Legendre polynomials. Calculated results were compared with experimental data. It was showed that continuous thermodynamic frameworks considered in this paper were well-matched to experimental data.

  • PDF

Investigation of Thermal Fusion Bonding and Separation of PMMA Substrates by using Molecular Dynamics Simulations (분자동역학을 이용한 PMMA 평판의 열접합 및 분리에 대한 연구)

  • Yi, Taeil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.111-116
    • /
    • 2018
  • Thermal fusion bonding is a method to enclose open microchannels fabricated on polymer chips for use in lab-on-a-chip (LOC) devices. Polymethyl methacrylate (PMMA) is utilized in various biomedical-microelectromechanical systems (bio-MEMS) applications, such as medical diagnostic kits, biosensors, and drug delivery systems. These applications utilize PMMAs biochemical compatibility, optical transparency, and mold characteristics. In this paper, we elucidate both the conformational entanglement of PMMA molecules at the contact interfacial regime, and the qualitative nature of the thermal fusion bonding phenomena through systematic molecular dynamics simulations.

Numerical Analysis Method of Overlay Model for Material Nonlinearity Considering Strain Hardening (변형률 경화를 고려한 오버레이 모델의 재료비선형 수치해석기법)

  • Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.291-301
    • /
    • 2007
  • The overlay model is a certain kinds of numerical analysis method to present the material non-lineariy which is represented the baushinger effect and the strain hardening. This model simulates the complex behavior of material by controlling the properties of the layers which like the hardening ratio, the section area and the yield stress. In this paper, the constitutive equation and plastic flow rule of each layer which are laid in the plane stress field are obtained by using the thermodynamics. Two numerical examples were tested for the validity of proposed method in uniaxial stress and plane stress field with comparable experimental results. The only parameter for the test is the yield stress distribution of each layers.

Calculations of the Thermal Expansion Coefficient for Rock-Forming Minerals Using Molecular Dynamics (MD) Simulation (분자동역학(MD) 시뮬레이션을 이용한 조암광물의 열팽창 계수 산정)

  • 서용석;배규진
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.269-278
    • /
    • 2001
  • We describe the calculation of thermal expansion coefficients of $\alpha$-quartz, muscovite and albite using a MD simulation method. The selection of interatomic potentials is important for the MD calculation, and we used the 2-body interatomic potential function. The coefficients are calculated using a differential operation of the temperature dependence of the lattice constant obtained from the NPT-ensemble molecular dynamics simulation. Reasonable agreement is found between the analytical results and measured data.

  • PDF

III-V 삼상 화합물 반도체의 분자선 결정성장법에서의 열역학적 고찰

  • O, Won-Ung;O, Jae-Eng;Baek, Su-Hyun
    • ETRI Journal
    • /
    • v.13 no.4
    • /
    • pp.42-51
    • /
    • 1991
  • MBE 성장시 기판 표면에서의 성장과정을 운동론적 지배과정과 열역학적 지배과정으로 나누어 성장모델을 제시하였으며, 화학적 평형상태에서의 열역학이 III-V compound의 성장속도와 composition 에 미치는 영향을 기존의 보고된 결과 데이터와 비교 분석하였다. 특히 miscibility gap 내에 존재하는 III-V ternary compound의 경우 박막의 성질 및 소자의 특성에 영향을 미치는 alloy clustering은 저온 성장시 surface kinetics에 의해, 고온성장시에는 열역학적 spinodal decomposition에 의해 결정됨을 알수 있었다. 열역학적 모델에서는 기판과 layer사이의 lattice mismatch와 재료의 elastic coefficient의 함수인 additive strain Gibbs free energy, 그리고 ternary solid solution의 regular behavior를 가정하여 ternary alloy의 mixing에 기인한 excess Gibbs free energy를 고려하였다.

  • PDF

Evaluation of Mechanical Properties for the Compacted Bentonite Buffer Materials (압축 벤토나이트 완충재의 역학 물성 평가)

  • Yoon, Seok;Hong, Chang-Ho;Kim, Taehyun;Kim, Jin-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.5-11
    • /
    • 2021
  • The compacted bentonite buffer is one of the most important components in an engineered barrier system (EBS) to dispose of high-level radioactive waste (HLW) produced by nuclear power generation. The compacted bentonite buffer has a crucial role in protecting the disposal canister against the external impact and penetration of groundwater, so it has to satisfy the thermal-hydraulic-mechanical requirements. Even though there have been various researches on the investigation of thermal-hydraulic properties, few studies have been conducted to evaluate mechanical properties for the compacted bentonite buffer. For this reason, this paper conducted a series of unconfined compression tests and obtained mechanical properties such as unconfined compressive strength, elastic modulus, and void ratio of Korean compacted bentonite specimens with different water content and dry density values. The unconfined compressive strength and elastic modulus increased, and the Poisson's ratio decreased a little with increasing dry density. It showed that unconfined compressive strength and elastic modulus were proportional to dry density. However, there was not a remarkable correlation between mechanical properties and water content.

hermodynamic Study on the Solubilization of Aniline by Cationic Surfactants (DTAB, TTAB, and CTAB) (양이온성 계면활성제 (DTAB, TTAB 및 CTAB)에 의한 아닐린의 가용화에 대한 열역학적 고찰)

  • Lee, Dong-Cheol;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1143-1152
    • /
    • 2019
  • In order to study the solubilization of aniline by cationic surfactants (DTAB, TTAB and CTAB), the solubilization constant (Ks) and thermodynamic functions were measured and calculated by using the UV-Vis method. The solubilization constants of aniline with the change of temperature were measured, and the effects of addition of ionic salts and organics on the solubilization constants were investigated. These effects of additives and temperature changes were compared and analyzed for each type of surfactant, and the solubilization of aniline was analyzed microscopically by comparing and evaluating the thermodynamic functions obtained from the solubilization constants. As a result, the Gibbs free energy and enthalpy changes were both negative and the entropy changes were positive within the measured range for the solubilization of aniline by cationic surfactants. The solubilization constant value decreased with increasing temperature and increased with increasing carbon chain length of the surfactant. As the concentration of ionic salts increased, the Gibbs free energy change increased at first and then decreased. In n-butanol solution, the Gibbs free energy change tended to increase continuously with increasing the concentration of n-butanol.

The Finite Element Formulation and Its Classification of Dynamic Thermoelastic Problems of Solids (구조동역학-열탄성학 연성문제의 유한요소 정식화 및 분류)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.37-49
    • /
    • 2000
  • This paper is for the first essential study on the development of unified finite element formulations for solving problems related to the dynamics/thermoelastics behavior of solids. In the first part of formulations, the finite element method is based on the introduction of a new quantity defined as heat displacement, which allows the heat conduction equations to be written in a form equivalent to the equation of motion, and the equations of coupled thermoelasticity to be written in a unified form. The equations obtained are used to express a variational formulation which, together with the concept of generalized coordinates, yields a set of differential equations with the time as an independent variable. Using the Laplace transform, the resulting finite element equations are described in the transform domain. In the second, the Laplace transform is applied to both the equation of heat conduction derived in the first part and the equations of motions and their corresponding boundary conditions, which is referred to the transformed equation. Selections of interpolation functions dependent on only the space variable and an application of the weighted residual method to the coupled equation result in the necessary finite element matrices in the transformed domain. Finally, to prove the validity of two approaches, a comparison with one finite element equation and the other is made term by term.

  • PDF

Thermal Resistant Characteristics of Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중 전력케이블 유동성 뒤채움재의 열저항 특성)

  • Oh, Gidae;Kim, Daehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.15-24
    • /
    • 2010
  • In the case of underground power utilities pipe such as circular pipe, the most difficult problem is low compaction efficiency of the bottom of pipe inducing the failure of utilities. To overcome this problem, various studies have been performed and one of these is CLSM(Controlled Low Strength Materials) accelerated flow ability. But underground power utilities pipe backfill materials is also needed to have good thermal property that can dissipate the heat as rapidly as it is generated. So, in this study, we performed thermal resistancy test for various materials such as sand, weathered soil, clay and mixed soil to analyze the thermal characteristics of CLSM(Controlled Low Strength Materials) with accelerated flow ability for various conditions(water content, unit weight, void ratio, curing time) and to evaluate the applicability for backfill material of underground power utilities pipe. The test results of 16 specimens for thermal resistancy test showed good thermal property that maintained below $85^{\circ}C\;cm/W$.

An Adiabatic Analysis on the Vuilleumier Refrigeration Cycle (Vuilleumier 냉동사이클에 대한 단열해석)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1231-1237
    • /
    • 1989
  • 본 연구에서는 이러한 단열해석상의 문제점을 해결하기 위한 하나의 방식이 광방법으로서 적절한 가정을 도입하여 단열모델에 대한 해석적인 근사해를 시도하였다. 실제조건에 부합하면서도 간편하며 경제적인 해석방법의 확립은 VM 사이클로 작동되는 냉동기에 대한 최적설계의 중요한 기초가 될 것이다. 해석모델의 정립, 종속변수에 대한 근사해, 성능평가에 필요한 열역학적량들을 종속변수의 해석적 함수형태로 표시하는 과정을 내용에 포함한다.