본 해설에서는 전자 즉 용액내에서 용해되어 있는 기체 분자의 모임에 의한 기포형성에 대해 다루려고 한다. 제 2절에는 Becker-Doring에 의한 고전이론과 그 문제점을 다루고 3절에서는 새로운 관점에서 본 용액내에서 기포를 형성하는 데 필요한 표면 에너지를, 4절에서는 기포형 성에 대한 열역학적인 면에서의 고찰, 5절에서는 용액내에서의 기포형성 모델에서 기포형성을 위한 압력강하를 구하는 방법의 종류와 그 온도에 따른 기포형성에 대해 논하기로 하고 증기로된 기포형성(vapor bubble formation)에 대하여는 다음 기회에 논하기로 한다.
Kim, Kong-Soo;Kim, Soo-Jong;Cho, Suk-Hyeong;Chun, Yong-Chul
Applied Chemistry for Engineering
/
v.2
no.1
/
pp.70-76
/
1991
Water soluble poly(sulfonated styrene-co-acrylic acid) was polymerized with sulfonated styrene and acrylic acid in the presence of silver sulfate at $99^{\circ}C$ for 4 hrs. The complex formation of poly(sulfonated styrene-co-acrylic acid) with Cu(II) was carried out. The maximum absorption wavelength of the poly(sulfonated styrene-co-acrylic)-Cu(II) system at different pH values was observed at 274 nm and 295 nm. The reduced viscosity of the poly(sulfonated styrene-co-acrylic acid)-Cu(II) complex were measured in the various pH ranges. The formation constants and stability constants of poly(sulfonated styrene-co-acrylic acid)-Cu(II) complex were calculated from Bjerrum method. The changes of enthalpy, free energy and entropy in the above reaction were determined by Ringbom method.
Seo, Yong-Won;Lee, Seung-Min;Lee, Ju-Dong;Lee, Gang-Woo;Yamasaki, Akihiro;Kiyono, Fumio
한국신재생에너지학회:학술대회논문집
/
2007.11a
/
pp.581-584
/
2007
(HFC(hydrofluorocarbon, 수소불화탄소)는 오존층 파괴 지수가 낮기 때문에 CFC(chlorofluorocarbon)의 대체 물질로 냉매와 발포제로 널리 사용되고 있는 물질이다. 하지만 HFC는 지구온난화 지수가 높은 기체이므로 대기중으로 방출되는 것을 막기 위해 분리/회수하여 재활용하는 것이 중요하다. 본 연구에서는 공기와 HFC의 혼합기체로부터 HFC만을 분리해 내는 방법으로 가스 하이드레이트 형성법을 제안하였다. 이 방법의 열역학적 타당성을 검증하기 위하여 질소+HFC-134a 혼합기체에 대하여 275-285 K의 온도 범위와 1-27 bar의 압력범위에 걸쳐서 가스 하이드레이트 상평형을 측정하였다. 질소는 가스 하이드레이트를 형성하기 위하여 0 $^{\circ}C$에서 150 bar 이상의 높은 압력이 필요한 반면 HFC-134a는 대기압에 가까운 낮은 압력이 필요하다. 두 기체의 평형 압력의 차가 크다는 것은 가스 하이드레이트 형성법을 이용할 경우 기체의 분리 효율이 매우 높다는 것을 나타낸다. 그리고, 본 실험을 통해서 얻어진 혼합기체의 하이드레이트상(H)-액상($L_W$)-기상(V)의 3상 평형선이 순수한 HFC-134a의 3상 평형선에 가깝게 위치하였다. 이는 가스 하이드레이트를 이용한 분리법이 낮은 압력에서 운전될 수 있음을 나타낸다. 이 분리법은 낮은 압력에서 운전되어 경제적일 뿐만 아니라 물 이외의 다른 매개체를 사용하지 않기 때문에 환경 친화적인 공정이라 할 수 있다.
The mechanism of silicon incorporation has been analyzed for the boat-grown GaAs crystals on the basis of phase equilibrium in the Ga and As system. Comparison was made between silicon concentrations calculated from the thermodynamics of incorporation reaction and carrier concentrations measured from van der Pauw method. For the 1-T HB(single temperature zone horizontal Bridgman) crystals, calculated concentrations were 5.3 ×10 15 (atoms/cm3), measured as 9.8 ×10 15(/cm3) at the seed part. They were calculated to be 1.1 ×10 16(atoms/cm3) and measured as 1.5 ×10 16(/cm3) for the 2-T(double temperature zone) HB crystals. On the other hand, it was found to be closer between the calculated and measured silicon concentrations for the VGF(vertical gradient freeze) crystals, which were grown within half the run time compared with 1-T or 2-T HB method.
The DFT and ab initio calculations have been performed to elucidate hydrogen interaction of HOOO-(H2O)n (n=1~5) clusters. The optimized geometries, harmonic vibrational frequencies, and binding energies are predicted at various levels of theory. The trans conformer of HOOO monomer is predicted to be thermodynamically more stable than cis form at the CCSD(T) level of theory. For HOOO-(H2O)n clusters, the geometries are optimized at B3LYP/aug-cc-pVTZ and CAM-B3LYP/aug-cc-pVTZ levels of theory. The binding energy of HOOO-H2O cluster is predicted to be 6.05 kcal/mol at the MP2//CAM-B3LYP/ aug-cc-pVTZ level of theory after zero-point vibrational energy (ZPVE) and basis set superposition error (BSSE) correction. The average binding energy per H2O is increased according to adding a H2O moiety in HOOO-(H2O)n clusters up to 7.2 kcal/mol for n=5.
최근 디젤 대체 연료 및 발전용 연료로서 그 가능성을 인정받고 있는 DME(dimethyl ether, $CH_{3}OCH_{3}$)를 이용하여 수소를 생산하는 방법으로 DME 수증기 개질반응의 기초 실험을 수행하였다. DME 개질 반응의 생성물의 평형 조성 분포를 온도, 압력, 원료의 공급비$(H_{2}O/DME)$를 변수로 하여 열역학적으로 해석하였고, DME, 에탄올, 또는 메탄올 수증기 개질 반응의 생성물의 분포를 비교하여 수소 생산을 위한 공급원료로의 가능성을 검토하였다. 여러 종류의 개질 촉매를 사용하여 DME 개질 반응을 수행해 본 결과, 반응온도 $300^{\circ}C$, 반응압력 1atm, 원료 공급비$(H_{2}O/DME)=3$인 반응조건에서 1.0wt% $Pd/{\gamma}$-alumina가 가장 좋은 활성 및 60% 이상의 수소 선택도를 보여주었으, 또한 원료의 공급비가 증가함에 따라 DME의 전환율 및 주 생성물인 수소의 수율이 현저하게 증가함을 보여주었다.
각종 산업제품의 주요 부품으로 사용되고 있는 고무재료는 사용 중 온도변화에 의해 체적 또는 길이 변화를 수반할 수 있어 결과적으로 고무제품의 성능이나 효율이 영향을 받게 된다. 특히 고온에서 고무제품의 치수변화를 제한하거나 일정치수를 강제할 경우 열수축이나 열팽창에 의해 응력이 발생하게 된다. 따라서 온도 변화에 따른 열응력의 측정은 고무제품의 정밀성과 성능을 평가하는 중요한 수단을 제공한다. 본 연구에서는 고무소재의 열응력 측정을 위한 새로운 측정방법을 개발하였고 이와 관련 새로운 시험장치를 설계, 제작하였다. 고무시편에 일정 변형의 인장을 준 상태에서 가열하면 열응력이 발생한다. 이 때의 열응력은 고무분자 사슬들의 운동성에 기인하며 배향된 고무분자 사슬들이 열역학적으로 랜덤 사슬형태로 돌아가려는 엔트로피적 힘이다. 따라서 온도가 높을수록 그 수축력은 증가하게 된다. 또한 고무분자 사슬의 사전 변형이 증가하면 그 열응력은 증가한다. 이때 열응력은 측정시간이 지남에 따라 최대치에 도달한 후 완화되며 그 완화속도는 설정온도에 의해 영향을 받는다. 여기서는 온도변화에 따른 고무시편의 열응력 측정결과를 소개하고, 고무분자 사슬의 엔트로피 변화와 점탄성적 흐름, 그리고 가열에 따른 고무 시편의 팽창 또는 수축이 열응력에 미치는 영향 등을 논의하였다. 특히 천연고무와 SBR 고무시편의 열응력 차이를 분자사슬의 운동과 연관하여 검토하였고, 가교밀도와 가교시스템이 각각 다른 고무시편에 대해 열응력 발생과에 따른 상관관계를 고찰하였다. 또한 시편의 형태와 두께가 열응력 발생에 미치는 영향도 검토하였다. 충전 배합고무의 경우 열응력에 영향을 미치는 인자로 고무분자 사슬의 운동성과 가교밀도 외에 고무재료와 충전제 사이의 물리 화학적 상호작용도 매우 중요한 요소가 된다. 배합고무에서 충전제의 영향을 검토하기 위해 실리카와 카본블랙을 선택하였고 배합고무의 열응력을 각각 측정하여 이들의 보강효과가 열응력에 미치는 영향에 대해 논하였다.
Jo, Yong-Beom;Kim, Jin-Cheol;Choe, U-Seong;Jeong, Won-Ho;U, Si-Gwan
Proceedings of the Korean Vacuum Society Conference
/
2016.02a
/
pp.117-117
/
2016
일반적인 박막 성장용 CVD는 막 성장 시간이 짧게는 수분에서 수시간 정도 소요하기 때문에 장비에 문제가 발생 할 시 조치를 취하고 다음 현상을 개선하기에 용이 하였다. 그리고 대분분의 장비가 국산화되어 있을 만큼 많은 경험치가 축척되어 있다. 그러나 2, 4 족 화합물 성장용 CVD는 고아학 렌즈 생산용 장비로 국내에서는 아직 생소하고 공정 경험이 없는 새로운 장비이다. 2,4 족 화합물의 특징은 다음과 같다. 2,4 족 화합물은 M, N 이라는 두가 물질이 결합하여 형성한다. 2,4 족 화합물은 높은 융점과 낮은 증기압을 갖니다. 이런 물질들은 고온에서 아래와 같이 평형적으로 반응한다. $$nMN_{(s)}=nM_{(g)}+Nn_{(g)}$$ 화합물인 $MN_{(g)}$의 상태로 존재할 수 있으나 일바적으로 n=2인 4족 원소의 2원자 분자로된 기체가 지배적이다. 증기상을 이용한 성장 공정에서는 구성 원자나 분자를 만들어내는 단계, 이들을 공급원에서 기판까지 수송하는 단계, 기판 위에 흡착하는 단계, 핵의 생성과 단결정을 생성하는 단계, 필요치 않는 구성물을 제거하는 단계를 거쳐 공정이 진행 된다. 각 공정은 성장 물질에 충분한 자유도를 주어야하고 자유도를 주기 위해서는 많은 열에너지가 공급 되어야 한다. 따라서 기존의 박막 성장 공정 보다 성장 속도가 느리고 증착하는 양보다는 버리는 양이 많으며 버려지는 성장물질들은 급격한 온도 변화가 생기는 곳에서 급격히 증착하기 시작한다. 본 성장 공정이 진행되는 압력은 30 torr 부근이며 공정 온도는 $1000^{\circ}C$ 부근이다. 30 torr 영역에서는 열전달이 대기압과 같은 속도로 진행되기 때문에 지속적으로 온도에의해 손상을 받는 부위가 있을 수 있다. 높은 공정 온도와 높은 공정 압력은 내부 구조물로 발생된 열을 빠르게 장비 표면으로 수송하게 되고 그 결과 장비의 연결 부분에 장착된 오링에 손상을 주게 된다. 오링 손상을 방지 하기위해 냉각수 라인을 형성하여 오링을 보호하게 되면 열역학적 기울기가 급격히 발생하는 부분이므로 CVD의 반응 부산물들이 빠른 시간동안 증착하게 되고 막히는 현상이 발생하게 된다. 목표한 두게까지 박막을 성장시키기 위해서는 장시간 공정이 필수이며 장시간 공정을 안정적으로 가져가지 위해서는 배기 라인의 막힘 현상을 해결하여야 한다. 본 논문에서는 막힘 현상의 진행을 시간에 따라 해석하였으며 장시간 공정을 진행하기위해 필요한 요소와 기구적으로 조치가 가능한 방법에 대해 작성하였다.
K-SGICs(synthetic graphite intercalation compounds) were synthesized in a modified two-bulb pyrex tube. The pressure in the two-bulb tube was maintained at approximately $10^{-3}$ torr for the reaction of potassium and graphite. Deintercalation process of the K-SGlCs obtained by the modified method was heat-treated by keeping in liquid paraffin between $25^{\circ}C$ and $1400^{\circ}C$. The thermal stability and the temperature dependence of the K-SGICs were characterized using differential scanning calorimeter(DSC) analyzer. Enthalpy and entropy for K-SGIC formations were calculated by confirming the deintercalation and thermodynamic exothermic reactions depending on the various temperatures. The structure changes and thermal stability of K-SGICs during the deintercalation reaction of potassium ions and the interlayer spaces of the synthetic graphite were identified by X-ray diffraction(XRD).
Since hydrate has been discovered on the earth, many numbers of experimental studies have been conducted for characterizing the fundamental properties of hydrates, such as equilibrium conditions, thermodynamic properties, structures, kinetics, etc. It is considered naturally occurred hydrates in porous rocks have a great potential as a future of unconventional energy resources, and the investigations of formation and dissociation of hydrates in porous media are required. In this study, an experimental apparatus was designed to perform experiments of hydrates in porous core. With the apparatus developed, firstly, isochoric experiments were conducted to find hydrate equilibrium conditions in porous media, and the results were compared with reference data to verify experimental apparatus and methods in this study. Secondly, experiment of formation was examined by observing the behaviors of pressure and electrical resistance and the effects of initial water saturation on formation were analysed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.