• Title/Summary/Keyword: 열역학적민감도

Search Result 15, Processing Time 0.022 seconds

A Numerical Study on the Flow and Heat Transfer Characteristics of Aluminum Pyramidal Truss Core Sandwich (알루미늄 피라미드 트러스 심재 샌드위치의 열유동 특성에 관한 수치해석 연구)

  • Kang, Jong-Su;Kim, Sang-Woo;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.638-644
    • /
    • 2019
  • In this study, the fluid flow and heat transfer characteristics within sandwich panels are investigated using computational fluid dynamics. Within the sandwich panels having periodic cellular cores, air can freely move inside the core section so that the structure is able to perform multi-functional roles such as simultaneous load bearing and heat dissipation. Thus, there needs to examine the thermal and flow analysis with respect to design variables and various conditions. In this regard, ANSYS Fluent was utilized to explore the flow and heat transfer within the pyramidal truss sandwich structures by varying the truss angle and inlet velocity. Without the entry effect in the first unitcell, the constant rate of pressure and the constant rate of Nusselt number was observed. As a result, it was demonstrated that Nusselt number increases and friction factor decreases as the inlet velocity increases. Moreover, the rate of Nusselt number and friction factor was appreciable in the range of V=1-5m/s due to the transition from laminar to turbulent flow. Regarding the effect of design variable, the variation of truss angle did not significantly influence the characteristics.

Evaluation of Durability for Glass fabric/Phenolic Composites under Salt Water Environment (염수환경에 노출된 유리섬유직물/페놀 복합재의 내구성 평가)

  • Yoon, Sung-Ho
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.27-34
    • /
    • 2005
  • Salt water spray and immersion tests were experimentally conducted for over 6 months to investigate the durability of glass fabric/phenolic composites under salt water environment. Mechanical properties such as tensile properties, flexural properties, and shear properties were evaluated and thermal analysis properties such as storage shear modulus, loss shear moduls, and tan 6 were obtained through a DMA. A change in chemical structures was analyzed through a FTIR. According to the results, mechanical properties and thermal analysis properties were sensitive to salt water environment and these properties began to degrade in increasing in exposure times. However, tensile and flexural moduli started to decrease and then slightly increase as increasing in exposure times due to plasticization and crosslinking in matrix as well as physical swelling in composites. Beyond a certain exposure times, these properties began to decrease as further increasing in exposure times. Also the shape and location of peaks in FTIR curves were insensitive to exposure times, but the intensity of peaks would be. finally we found that the durability of glass fabric/phenolic composites were affected on salt water immersion environment rather than salt water spray environment.

Effects of Ethanol on Neurobehavioral Performance (컴퓨터를 이용한 에탄올에 의한 신경행동기능 장애 평가)

  • Jeon, Man-Joong;SaKong, Joon;Kang, Pock-Soo;Kim, Moon-Chan;Kim, Hak-Soo
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.183-196
    • /
    • 1997
  • An experimental study was performed to investigate. The subjects drank (0.5g/kg ethanol and performed 7 items of SPES(simple reaction time, color word stress, digit classification, finger tapping speed, numerical ability, symbol digit coding, memory digit span). 20 students of medical college participated in the study during August, 1996. After ethanol intake, performance of 4 items(simple reaction time, digit classification, finger tapping speed, symbol digit coding) significantly showed to be decreased. The function of perception-response speed and steady movement were found to be more sensitive to ethanol than that of short-term memory, numerical ability and specification of color. No significant association were found between smoking, alcohol drinking, BMI(body mass index) and the effects of ethanol on neurobehavioral performance.

  • PDF

The Prediction of tong-Term Creep Behavior of Recycled PET Polymer Concrete (단기 크리프 실험을 이용한 PET 재활용 폴리머콘크리트의 장기 크리프거동 예측)

  • Jo Byung-Wan;Tae Ghi-Ho;Kim Chul-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.521-528
    • /
    • 2004
  • In general, polymer concrete has more excellent mechanical properties and durability than Portland cement concrete, but very sensitive to heat and has large deformations. In this study, the long-term creep behaviors was predicted by the short-term creep test, and then the characteristic of creep of recycled-PET polymer concrete was defined by material and experimental variables. The error in the predicted long-term creep values is less than 5 percent for all polymer concrete systems. The filler carry out an important role to restrict the creep strains of recycled PET Polymer concrete. The creep strain and specific on using the $CaCO_3$ were less than using fly-ash. The creep increases with an increase in the applied stress, but not proportional the rate of stress increase ratio. The creep behavior of polymer concrete using recycled polyester resin is not a linear viscoelastic behavior.

Design and Optimization of Pilot-Scale Bunsen Process in Sulfur-Iodine (SI) Cycle for Hydrogen Production (수소 생산을 위한 Sulfur-Iodine Cycle 분젠반응의 Pilot-Scale 공정 모델 개발 및 공정 최적화)

  • Park, Junkyu;Nam, KiJeon;Heo, SungKu;Lee, Jonggyu;Lee, In-Beum;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.235-247
    • /
    • 2020
  • Simulation study and validation on 50 L/hr pilot-scale Bunsen process was carried out in order to investigate thermodynamics parameters, suitable reactor type, separator configuration, and the optimal conditions of reactors and separation. Sulfur-Iodine is thermochemical process using iodine and sulfur compounds for producing hydrogen from decomposition of water as net reaction. Understanding in phase separation and reaction of Bunsen Process is crucial since Bunsen Process acts as an intermediate process among three reactions. Electrolyte Non-Random Two-Liquid model is implemented in simulation as thermodynamic model. The simulation results are validated with the thermodynamic parameters and the 50 L/hr pilot-scale experimental data. The SO2 conversions of PFR and CSTR were compared as varying the temperature and reactor volume in order to investigate suitable type of reactor. Impurities in H2SO4 phase and HIX phase were investigated for 3-phase separator (vapor-liquid-liquid) and two 2-phase separators (vapor-liquid & liquid-liquid) in order to select separation configuration with better performance. The process optimization on reactor and phase separator is carried out to find the operating conditions and feed conditions that can reach the maximum SO2 conversion and the minimum H2SO4 impurities in HIX phase. For reactor optimization, the maximum 98% SO2 conversion was obtained with fixed iodine and water inlet flow rate when the diameter and length of PFR reactor are 0.20 m and 7.6m. Inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion with fixed temperature and PFR size (diameter: 3/8", length:3 m). When temperature (121℃) and PFR size (diameter: 0.2, length:7.6 m) are applied to the feed composition optimization, inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion.