• Title/Summary/Keyword: 열수분출대

Search Result 15, Processing Time 0.033 seconds

A Study on Characteristics of Magnetism from Hydrothermal Vent Area on Esmeralda Bank in Mariana Arc (Mariana 해령 Esmeralda Bank 해저열수분출 지역에서의 지자기 특성 연구)

  • Kim, Ho;Kim, Chang-Hwan;Jeong, Eui-Young;Park, Chan-Hong;Kim, Jong-Uk;Park, Chung-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.27-32
    • /
    • 2008
  • Detailed bathymetry and magnetic survey data for Esmeralda Bank obtained by R/V Onnuri of Korea Ocean Research & Development Institute in September 2007 were analyzed to estimate the locations of possible hydrothermal vents. The shape of Esmeralda Bank is caldera type opened in the western part. The summit is very shallow, about 50 meter b.s.l. and the bottom is about 1300 meter b.s.l. The western part of Esmeralda Bank is more steeper and topographic irregular than eastern part, and showed the valley made by erosion or collapse. The magnetic anomaly patterns of Esmeralda Bank located low anomalies over the north and high anomalies over the south. The magnetic anomalies are steep over the summits and gently smooth over the deep bottom. Two low magnetization zones are located in the summit and westside of Esmeralda Bank. The low magnetization zones of the summits of Esmeralda Bank suggest the possible existence of hydrothermal vent.

  • PDF

Mineralogical and Geochemical Studies on the Daum Vent Field, Central Indian Ridge (인도양 중앙해령 Daum 열수분출대의 광물·지구화학적 연구)

  • Ryoung Gyun Kim;Sun Ki Choi;Jonguk Kim;Sang Joon Pak;Wonnyon Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.765-779
    • /
    • 2023
  • The Daum Vent Field (DVF) was newly discovered in the Central Indian Ridge during the hydrothermal expedition by the Korea Institute of Ocean Science & Technology (KIOST) in 2021. In this paper, we describe the detailed mineralogy and geochemistry of hydrothermal chimney and mound to understand the nature of hydrothermal mineralization in the DVF. The mineral assemblages (pyrite±sphalerite±chalcopyrite) of dominant sulfides, FeS contents (mostly <20 mole %) of sphalerite, and (Cu+Zn)/Fe values (0.001-0.22) of bulk compositions indicate that the DVF has an strong affinity with basaltic-hosted seafloor massive sulfide (SMS) deposit along the oceanic ridge. Combined with the predominance of colloform and/or dendritic-textured pyrite and relatively Fe-poor sphalerite in chimneys, the fluid-temperature dependency of trace element systematics (Co, Mn, and Tl) between chimney and mound indicates that the formation of mound was controlled by relatively reducing and high-temperature fluids compared to chimney. The δ34S values (+8.31 to +10.52‰) of pyrite reflect that sulfur and metals were mainly leached from the associated basement rocks (50.6-61.3%) with a contribution from reduced seawater sulfur (38.7-49.4%). This suggests that the fluid-rock interaction, with little effect of magmatic volatile influx, is an important metal source for the sulfide mineralization in the DVF.

Experimental Study on the Dissociation Characteristics of Methane Hydrate Pellet by Hot Water Injection (열수 주입법에 의한 메탄가스 하이드레이트 펠릿의 해리 특성에 관한 실험 연구)

  • Lee, Seung-Han;Yoon, Yong-Seok;Seong, Kwan-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1177-1184
    • /
    • 2011
  • Gas-to-Solid (GTS) technology is composed of three stages: hydrate production, transportation, and regasification. For efficient operation of regasification plants, it is crucial to predict the temperature and flow rate of hot water necessary to dissociate the hydrate pellets. Dissociated gas escaping from the pellet surface, when in contact with hot water, will alter the flow field and consequently alter the heat transfer rate. Methane hydrate pellet dissociation characteristics in low- to moderatetemperature water were investigated by taking images of the changes in the hydrate pellets' shapes in a pressurized reactor and measuring the total time required for complete melting of the pellets. The effects of water temperature, hydrate conversion rate, and flow speed on the dissociation completion time were also investigated. Bubbling gas released from the pellet surface induced a secondary flow that enhanced the heat transfer rate and thus decreased the dissociation time. It was also found that a considerable flow rate was needed to significantly decrease the dissociation time.

통가 열수광상 지역의 해상 및 심해 지자기 조사 연구

  • Kim, Chang-Hwan
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.124-127
    • /
    • 2010
  • 본 연구에서는 통가 해역 라우분지의 열수 광상 가능성이 있는 해산들에 대하여 자력탐사가 수행되었다. 그 중 TA 09 해산에 대하여 심해견인 자력탐사가 실시되었으며 심해견인 자력탐사는 정밀한 탐사를 위하여 해저면에서 약 50 ~ 60 m 고도를 유지하며 자력계를 견인하였다. 탐사지역의 총 자력 성분은 Overhauser Proton Magnetomer (모델 SeaSPY 300(해상자력계)m, SeaSPY 6000(심해견인자력계))를 이용하여 측정되었다. 탐사 해산들 중 해상자력탐사와 심해자력탐사가 같이 수행된 TA 09 해산과 주요 열수 광상 유망 지역으로 분류되는 TA 12, 26 해산에 대해서만 측정된 지자기값을 이용하여 자기이상도를 구하였으며 자화역산법을 이용하여 자화이상도를 제작하고 분석하였다. TA 09 해산과 TA 26 해산에서의 해상 자기이상도는 쌍극자 이상형태의 단순이상을 보이며 TA 12 해산에서는 정상부에 고이상이 나타나고 그 주변으로는 저이상대가 분포하고 있다. TA 09 해산에서의 해상자력계에 의한 자기이상치와 심해견인자력계에 의한 자기이상치를 비교하여 보면 거의 10배 이상의 해상도 차이를 보여준다. 연구지역 탐사해산들의 해저지형과 비교하여 보면 열수분출대의 가능성이 높은 저자화이상대들은 주로 해산의 정상부 및 정상부 칼데라와 그 칼데라 주변부에 주로 위치하고 있는 모습을 나타내고 있다. 향후 타 탐사 해산들에 대한 자기이상에 대한 정밀처리/분석 후 탄성파 탐사결과, 암석샘플의 결과 및 지화학결과 등과 비교하여 열수광상의 존재 여부 및 위치 추정 분석이 필요할 것으로 판단된다.

  • PDF

Magnetic Characteristics of TA19-1 and TA19-2 Seamounts in the Lau Basin, the South Western Pacific (남서태평양 라우분지 TA19-1 해산과 TA19-2 해산의 지자기 특성 연구)

  • Kim, Chang Hwan
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.395-404
    • /
    • 2014
  • We conducted the geophysical survey of possible hydrothermal vent sites at 2009, in the Lau Basin, the south western Pacific and analyzed the magnetic characteristics of TA19-1 and TA19-2 seamounts. TA19-1 is a cone-shaped seamount with a caldera summit. TA19-2 seamount is bigger and shows more complicated topography than TA19-1 seamount. TA19-2 has a large caldera, a summit in the west side of the caldera and several crests. Simple dipole anomalies with a high over the north and a low over the south occur in TA19-1 seamount. High magnetic anomalies are located in the northern flank and the summit of TA19-2 seamount and low anomalies around the summit and the caldera. The results of bathymetry and magnetic data suggest that TA19-2 seamount might have more complicated magmatic process than TA19-1. Low magnetization zones are located over the summit, the calderas and the caldera rims. The magnetization lows indicate that submarine hydrothermal vents, along faults and fracture zones, could have caused an alteration of magnetic minerals. The magnetization highs over the summit and the calderas might have been related with later magmatisms like volcanic sills, intrusions.

A Study on the Hydrothermal Vent in the Mariana Trench using Magnetic and Bathymetry Data (지자기자료 및 정밀해저지형자료를 이용한 마리아나 해구 해저 열수광상 연구)

  • Kim, Chang-Hwan;Kim, Ho;Jeong, Eui-Young;Park, Chan-Hong;Go, Young-Tak;Lee, Seung-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.22-40
    • /
    • 2009
  • Detailed bathymetry and magnetic survey data for NW Rota-1 and Esmeralda Bank obtained by R/V Onnuri of Korea Ocean Research & Development Institute in September 2007 were analyzed to investigate bathymetry and magnetic characteristics of the study area and to estimate the locations of possible hydrothermal vents. The shape of NW Rota-1 is corn type, and the depth of the summit is about 500 meter b.s.l. NW Rota-1 shows irregular topographic expression in the southeastern part. The shape of Esmeralda Bank is caldera type opened in the western part. The summit is very shallow, about 50 meter b.s.l. The western part of Esmeralda Bank is more steeper and topographic irregular than the eastern part, and have the valley made by erosion or collapse. The magnetic anomaly patterns of NW Rota-1 and Esmeralda Bank show low anomalies over the north and high anomalies over the south. The magnetic anomalies are steep over the summits and gently smooth over the deep bottom. The low magnetization zone occurs over the summit of NW Rota-1 and is surrounded by the high zones correlated with its crater. Two low magnetization zones are located in the summit and westside of Esmeralda Bank. The low magnetization zones of the summits of NW Rota-1 and Esmeralda Bank suggest the possible existence of hydrothermal vent.

Sulfur Isotope Composition of Seafloor Hydrothermal Vents in the Convergent Plate Boundaries of the Western Pacific: A Role of Magma on Generation of Hydrothermal Fluid (서태평양 지판소멸대의 해저열수분출구에서 관찰되는 황동위원소 조성변화: 열수 생성의 다양성과 마그마의 역할)

  • Kim, Jong-Uk;Moon, Jai-Woon;Lee, Kyeong-Yong;Lee, In-Sung
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.145-156
    • /
    • 2012
  • Seafloor hydrothermal system occurs along the volcanic mid-ocean ridge, back-arc spreading center, and other submarine volcanic regions. The hydrothermal system is one of the fundamental processes controlling the transfer of energy and matter between crust/mantle and ocean; it forms hydrothermal vents where various deepsea biological communities are inhabited and precipitates metal sulfide deposits. Hydrothermal systems at convergence plate boundaries show diverse geochemical properties due to recycle of subducted material compared to simple systems at mid-ocean ridges. Sulfur isotopes can be used to evaluate such diversity in generation and evolution of hydrothermal system. In this paper, we review the sulfur isotope composition and geochemistry of hydrothermal precipitates sampled from several hydrothermal vents in the divergent plate boundaries in the western Pacific region. Both sulfide and sulfate minerals of the hydrothermal vents in the arc and backarc tectonic settings commonly show low sulfur isotope compositions, which can be attributed to input of magmatic $SO_2$ gas. Diversity in geochemistry of hydrothermal system suggests an active role of magma in the formation of seafloor hydrothermal system.

Hydrothermal Alteration and Its Cenetic Implication in the Casado Volcanic-hosted Epithermal Cold-Silver Deposit: Use in Exploration (가사도 화산성 천열수 금은광상의 열수변질대 분포 및 성인: 탐사에의 적용)

  • 김창성;최선규;최상훈;이인우
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.205-220
    • /
    • 2002
  • The gold-silver deposits in the Casado district were formed in the sheeted and stockwork quartz veins which fill the fault fractures in volcanic rocks. K-Ar dating of alteration sericite (about 70 Ma) indicates a Late Cretaceous age for ore mineralization. These veins are composed of quartz, adularia, carbonate, and minor of pyrite, sphalerite, chalcopyrite, galena, Ag-sulfosalts (argentite, pearceite, Ag-As-Sb-S system), and electrum. These veins are characterized by chalcedonic, comb, crustiform and feathery textures. Based on the hydrothermally altered mineral assemblages, regional alteration zoning associated with mineralization in the Gasado district is defined as four zones; advanced argillic (kaolin mineral-alunite-quartz), argillic (kaolin mineral-quartz), phyllic (quartz-sericite-pyrite) and propylitic (chlorite-carbonate-quartz-feldspar-pyroxene) zone. Phyllic and propylitic zones is distributed over the study area. However, advanced argillic zone is restricted to the shallow surface of the Lighthouse vein. Compositions of electrum ranges from 14.6 to 53.7 atomic % Au, and the depositional condition for mineralization are estimated in terms of both temperature and sulfur fugacity: T=245。$~285^{\circ}C$, logf $s_2$=$10^{-10}$ ~ $10^{-12}$ Fluid inclusion and stable isotope data show that the auriferous fluids were mixed with cool and dilute (158。~253$^{\circ}C$ and 0.9~3.4 equiv. wt. % NaCl) meteoric water ($\delta^{18}$ $O_{water}$=-10.1~8.0$\textperthousand$, $\delta$D=-68~64$\textperthousand$). These results harmonize with the hot-spring type of the low-sulfidation epithermal deposit model, and strongly suggest that Au-Ag mineralization in the Gasado district was formed in low-sulfidation alteration type environment at near paleo-surface.

Seismic Facies Classification of Igneous Bodies in the Gunsan Basin, Yellow Sea, Korea (탄성파 반사상에 따른 서해 군산분지 화성암 분류)

  • Yun-Hui Je;Ha-Young Sim;Hoon-Young Song;Sung-Ho Choi;Gi-Bom Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.136-146
    • /
    • 2024
  • This paper introduces the seismic facies classification and mapping of igneous bodies found in the sedimentary sequences of the Yellow Sea shelf area of Korea. In the research area, six extrusive and three intrusive types of igneous bodies were found in the Late Cretaceous, Eocene, Early Miocene, and Quaternary sedimentary sequences of the northeastern, southwestern and southeastern sags of the Gunsan Basin. Extrusive igneous bodies include the following six facies: (1) monogenetic volcano (E.mono) showing cone-shape external geometry with height less than 200 m, which may have originated from a single monogenetic eruption; (2) complex volcano (E.comp) marked by clustered monogenetic cones with height less than 500 m; (3) stratovolcano (E.strato) referring to internally stratified lofty volcanic edifices with height greater than 1 km and diameter more than 15 km; (4) fissure volcanics (E.fissure) marked by high-amplitude and discontinuous reflectors in association with normal faults that cut the acoustic basement; (5) maar-diatreme (E.maar) referring to gentle-sloped low-profile volcanic edifices with less than 2 km-wide vent-shape zones inside; and (6) hydrothermal vents (E.vent) marked by upright pipe-shape or funnel-shape structures disturbing sedimentary sequence with diameter less than 2 km. Intrusive igneous bodies include the following three facies: (1) dike and sill (I.dike/sill) showing variable horizontal, step-wise, or saucer-shaped intrusive geometries; (2) stock (I.stock) marked by pillar- or horn-shaped bodies with a kilometer-wide intrusion diameter; and (3) batholith and laccoliths (I.batho/lac) which refer to gigantic intrusive bodies that broadly deformed the overlying sedimentary sequence.