• Title/Summary/Keyword: 열수력 성능

Search Result 35, Processing Time 0.041 seconds

Integration Requirements of Heterogeneous Simulation Software Modules in Operator Training Simulator (OTS에서 이질적 시뮬레이션 소프트웨어 모듈의 통합요건)

  • 박근옥;구인수
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.97-101
    • /
    • 2002
  • 최근 개발되고 있는 원자력발전소용 OTS(Operator Training Simulator) 개발은 설계 및 해석에 사용되었던 여러 가지 코드(시뮬레이션 소프트웨어)를 수정 보완하여 이들을 상호 통합하는 방식으로 수행되는 경향을 보이고 있다. 기존에 개발되었거나 현재 운영중인 대부분의 OTS는 단일의 고성능 컴퓨터 환경에 의존하므로 발전소 설계와 해석에 사용하였던 서로 다른 코드를 상호 통합하여 사용하기에는 어려움이 많았다. 그러나, 최근에는 컴퓨터의 성능과 네트워크 기술이 비약적으로 발전하여 서로 다른 속성을 갖는 시뮬레이션 소프트웨어를 각각 서로 다른 컴퓨터에 적재 실행시키고 네트워크를 통하여 연동시키는 것이 가능해졌다. 본 연구는 원자력발전소 설계와 해석에 사용하고 있는 시뮬레이션 소프트웨어(노심 모사코드, 열 수력 모사코드, 구조물 모사코드), 인간기계연계(Man Machine Interface) 소프트웨어, 각 모사 소프트웨어간의 통신과 실행을 제어하는 강사 소프트웨어를 분산된 컴퓨터 환경에서 실행시키는 OTS를 개발하였다. 본 연구를 수행함에 있어서 서로 속성이 다른 소프트웨어 모듈을 하나로 통합하는 작업이 가장 부담스러웠다. 따라서, 서로 다른 소프트웨어 모듈을 통합하기 위한 요건을 개발초기에 설정하고, 이 요건을 모든 소프트웨어 개발조직이 준수하도록 하였다. 본 논문에서는 OTS를 구성하는 이질적인 소프트웨어 모듈의 기능과 특징, 이들을 통합하기 위한 요건을 설명한다. 또한 각 요건이 OTS 개발공정에서 어떻게 적용되고 사용되었는지를 살펴본다.

  • PDF

CE LBLOCA EM의 개선 방향 고찰

  • 최동수;박병서;이상종;조창석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.707-712
    • /
    • 1998
  • 이종 코드에 의한 CE형 발전소의 대형 냉각재 상실 사고 해석이 수행되었다. 이 연구는 상대적으로 최근에 개발된 웨스팅하우스 대형 냉각재 상실 사고 해석 코드를 사용하여 영광 3&4호기의 대형 냉각재 상실 사고를 계산해 봄으로써 CE 대형 냉각재 상실 사고 해석 코드의 개선 방향을 고찰하는 것을 목적으로 하였다. 계산은 가장 제한적인 대형 냉각재 상실 사고의 Blowdown 및 Refill 기간 동안 수행하였다. 이 기간 동안의 RCS내 열수력적 거동 및 연료봉 온도 변화는 CE 대형 냉각재 상실 사고 해석 코드를 사용하여 계산한 경우와 크게 다르지 않음을 확인하였다. 따라서 향후 CE 대형 냉각재 상실 사고 해석 코드의 성능 개설은 Reflood 해석용 코드의 개선 및 개발을 중심으로 이루어져야 한다는 결론을 얻었다.

  • PDF

Evaluation of Total Loss of Feedwater Accident/Recovery Phase and Investigation of the Associated EOP (완전급수상실사고/복구과정의 평가와 관련비상운전절차의 검토)

  • Bang, Young-Seok;Seul, Kwang-Won;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.37-50
    • /
    • 1993
  • To evaluate the sequence of event and the Thermohydraulic behavior during total loss of feedwater accident and recovery procedure, a RELAP5/MOD3 calculation is performed and compared with the LOFT L9-l/L3-3 experiment. Also, the predictability of the code for the major Thermohydraulic phenomena following the accident is assessed. As a result, it is found that a pressure control using the spray until the time the water level reaches the top of the pressurizer, an overpressure protection by pressurizer PORV, a recovery of the secondary heat removal capability by refilling steam generator, and an effective cooldown by the continued natural circulation can be performed without core uncovery. It is also found that the plant-specific evaluation is necessary to confirm the effectiveness of the current symptom-oriented emergency operating procedure, especially in an overpressure protection performance and steam generator recovery performance.

  • PDF

Radar rainfall prediction based on deep learning considering temporal consistency (시간 연속성을 고려한 딥러닝 기반 레이더 강우예측)

  • Shin, Hongjoon;Yoon, Seongsim;Choi, Jaemin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.

Analytical, Numerical, and Experimental Comparison of the Performance of Semicircular Cooling Plates (반원형 구조의 냉각판 성능에 관한 해석적/수치해석적/실험적 비교)

  • Cho, Kee-Hyeon;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1325-1333
    • /
    • 2011
  • An analytical, numerical, and experimental comparison of the hydraulic and thermal performance of new vascular channels with semicircular cross sections was conducted. The following conditions were employed in the study: Reynolds number, 30-2000; cooling channels with a volume fraction of the cooling channels, 0.04; and pressure drop, $30-10^5$ Pa. Three flow configurations were considered: first, second, and third constructal structures with diameters optimized for hydraulic operations. To validate the proposed vascular designs by an analytical approach, 3-D numerical analysis was performed. The numerical model was also validated by the experimental data, and the comparison results were in excellent agreement in all cases. The validation study against the experimental data showed that compared to traditional channels, the optimized structure of the cooling plates could significantly enhance heat transfer and decrease pumping power.

ITER HCCR TBM 헬륨냉각계통 개발을 위한 헬륨공급장치 구축 및 실험계획

  • Lee, Eo-Hwak;Kim, Seok-Gwon;Jin, Hyeong-Gon;Yun, Jae-Seong;Jo, Seung-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.465-465
    • /
    • 2014
  • 증식블랑켓모듈(TBM, Test Blanket Module)을 개발하여 왔다. 이 두 증식블랑켓모듈은 모두 헬륨냉각을 기반으로 개발 되어왔으며 이에 따라, 헬륨순환기, 헬륨히터 및 헬륨열교환기 등에 대한 기본적인 연구가 수행되었다. 이후 2012년 고체형 증식블랑켓모듈을 ITER TBM 개념으로 주도하기로 결정함에 따라, HCCR (Helium Cooled Ceramic Reflector) TBM의 보조계통인 하나인 헬륨냉각계통(HCS, Helium Cooling System)에 대한 개발이 본격적으로 이루어졌다. 한국원자력연구원에서는 HCCR TBM의 냉각성능을 만족하기 위하여 8 MPa, 1.5 kg/s 및 $300/500^{\circ}C$ (입구/출구 온도)의 운전조건을 갖는 헬륨냉각계통의 설계를 완료하였다. 설계된 헬륨냉각계통은 HCCR TBM에서 회수된 약 $450^{\circ}C$의 헬륨을 열회수기(recuperator)기와 냉각기를 통해 상온으로 냉각시킨 후, 필터를 통해 헬륨을 여과시킨다. 여과된 헬륨은 헬륨순환기에 의해 가압되어 열회수기를 다시 지나 $300^{\circ}C$ 이상으로 가열된다. 가열된 헬륨은 열회수기를 지나지 않는 상온의 헬륨과 혼합되어 최종적으로 HCCR TBM의 입구온도 조건인 $300^{\circ}C$로 맞추어 HCCR TBM에 공급된다. 이러한 열회수기 중심으로 '${\infty}$' 모양의 자가 교차로 설계된 헬륨냉각계통은 고온영역과 저온영역으로 냉각회로를 구분하여 순환기, 필터 및 각종 계측기의 운전온도 환경을 상온으로 유지시킬 수 있어 운전 및 유지보수 관점에서 이점이 있다. HCCR TBM의 헬륨냉각계통 설계 및 핵심 기기를 실증하고, 운전 경험을 쌓기 위하여 헬륨공급장치(HeSS, Helium Supply System)를 헬륨유량기준 1/3 규모(0.5 kg/s)로 구축하였으며, '14년까지 HeSS를 실증규모로 업그레이드 하기 위하여 80기압 환경에서 압축비 1.1, 유량 1.5 kg/s의 성능을 내는 헬륨순환기를 설치할 예정이다. 현재 구축된 1/3 규모 HeSS는 국내 구축된 전자빔 고열부하 시험 장비인 KoHLT-EB (Electron Beam)와 연계되어 HCCR TBM의 일차벽(플라즈마 대향부품)을 검증할 예정이며, 이를 통해 얻어진 열수력 DB는 현재 개발중인 핵융합로 안전해석코드인 GAMMA-FR 검증에 활용될 계획이다.

  • PDF

Analysis of Hydrodynamics in a Directly-Irradiated Fluidized Bed Solar Receiver Using CPFD Simulation (CPFD를 이용한 태양열 유동층 흡열기의 수력학적 특성 해석)

  • Kim, Suyoung;Won, Geunhye;Lee, Min Ji;Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.535-543
    • /
    • 2022
  • A CPFD (Computational particle fluid dynamics) model of solar fluidized bed receiver of silicon carbide (SiC: average dp=123 ㎛) particles was established, and the model was verified by comparing the simulation and experimental results to analyze the effect of particle behavior on the performance of the receiver. The relationship between the heat-absorbing performance and the particles behavior in the receiver was analyzed by simulating their behavior near bed surface, which is difficult to access experimentally. The CPFD simulation results showed good agreement with the experimental values on the solids holdup and its standard deviation under experimental condition in bed and freeboard regions. The local solid holdups near the bed surface, where particles primarily absorb solar heat energy and transfer it to the inside of the bed, showed a non-uniform distribution with a relatively low value at the center related with the bubble behavior in the bed. The local solid holdup increased the axial and radial non-uniformity in the freeboard region with the gas velocity, which explains well that the increase in the RSD (Relative standard deviation) of pressure drop across the freeboard region is responsible for the loss of solar energy reflected by the entrained particles in the particle receiver. The simulation results of local gas and particle velocities with gas velocity confirmed that the local particle behavior in the fluidized bed are closely related to the bubble behavior characterized by the properties of the Geldart B particles. The temperature difference of the fluidizing gas passing through the receiver per irradiance (∆T/IDNI) was highly correlated with the RSD of the pressure drop across the bed surface and the freeboard regions. The CPFD simulation results can be used to improve the performance of the particle receiver through local particle behavior analysis.

NUMERICAL STUDY OF THE HIGH-SPEED BYPASS EFFECT ON THE AERO-THERMAL PERFORMANCE OF A PLATE-FIN TYPE HEAT EXCHANGER (평판-휜 열교환기의 열-수력학적 성능에 대한 고속 바이패스 영향의 수치적 연구)

  • Lee, Jun Seok;Kim, Minsung;Ha, Man Yeong;Min, June Kee
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.67-80
    • /
    • 2017
  • The high-speed bypass effect on the heat exchanger performance has been investigated numerically. The plate-fin type heat exchanger was modeled using two-dimensional porous approximation for the fin region. Governing equations of mass, momentum, and energy equations for compressible turbulent flow were solved using ideal-gas assumption for the air flow. Various bypass-channel height were considered for Mach numbers ranging 0.25-0.65. Due to the existence of the fin in the bypass channel, the main flow tends to turn into the core region of the channel, which results in the distorted velocity profile downstream of the fin region. The boundary layer thickness, displacement thickness, and the momentum thickness showed the variation of mass flow through the fin region. The mass flow variation along the fin region was also shown for various bypass heights and Mach numbers. The volumetric entropy generation was used to assess the loss mechanism inside the bypass duct and the fin region. Finally, the correlations of the friction factor and the Colburn j-factor are summarized.

LOCA Analysis and Development of a Simple Computer Code for Refill-Phase Analysis (냉각재 상실사고 분석 및 재충진 단계해석용 전산코드 개발)

  • Ree, Hee-Do;Park, Goon-Cherl;Kim, Hyo-Jung;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.200-208
    • /
    • 1986
  • The loss of coolant accident based on a double-ended cold leg break is analyzed with the discharge coefficient (Ca) of 0.4. This analysis covers the whole transient period from the start of depressurization to the complete refilling of the core by using RELAP4/MOD6-EM and RELAP4/ MOD6-HOT CHANNEL for the system thermal-hydraulics and the fuel performance during the blowdown phase respectively, and RELAP4/MOD6-FLOOD and TOODEE2 during the reflood phase. A simple analytical method has been developed to account for the lower plenum filling by approximating steam-water countercurrent flows and superheated wall effects at the downcomer during the refill period. Based on the informations. at the time of EOB (end-of-bypass), the refill duration time and the initial reflooding temperature were estimated and compared with the results from the RELAP4/MOD6, resulting in a good agreement. In addition, some parametric studies on the EOB were performed. The form loss coefficient between upper head and upper downcomer was found to be sensitive to the occurrence of the spurious EOB. Appropriate form loss coefficients should be taken into account to avoid the flow oscillations at the downcomer. The analyses with the six and three volume core nodalizations, respectively, show much similar trends in the system thermal-hydraulic performance, but the former case is recommended to obtain good results.

  • PDF

An Experimental Study on Flow Distributor Performance with Single-Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 유동분사기 성능에 대한 실험연구)

  • Ryu, Sung Uk;Bae, Hwang;Yang, Jin Hwa;Jeon, Byong Guk;Yun, Eun Koo;Kim, Jaemin;Bang, Yoon Gon;Kim, Myung Joon;Yi, Sung-Jae;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.124-132
    • /
    • 2016
  • In order to estimate the effect of flow distributors connected to an upper nozzle of CMT(Core Makeup Tank) on the thermal-hydraulic characteristics in the tank, a simplified 2 inch Small Break Loss of Coolant Accident(SBLOCA) was simulated by skipping the decay power and Passive Residual Heat Removal System(PRHRS) actuation. The CMT is a part of safety injection systems in the SMART (System Integrated Modular Advanced Reactor). Each test was performed with reliable boundary conditions. It means that the pressure distribution is provided with repeatable and reproducible behavior during SBLOCA simulations. The maximum flow rates were achieved at around 350 seconds after the initial opening of the isolation valve installed in CMT. After a short period of decreased flow rate, it attained a steady injection flow rate after about 1,250 seconds. This unstable injection period of the CMT coolant is due to the condensation of steam injected into the upper part of CMT. The steady injection flow rate was about 8.4% higher with B-type distributor than that with A-type distributor. The gravity injection during hot condition tests were in good agreement with that during cold condition tests except for the early stages.