• Title/Summary/Keyword: 열성능 시험

Search Result 17, Processing Time 0.022 seconds

Development of a Real-Time Thermal Performance Diagnostic Monitoring System Using Self-Organizing Neural Network for KORI-2 Nuclear Power Unit (자기학습 신경망을 이용한 원자력발전소 고리 2호기 실시간 열성능 진단 시스템 개발)

  • Kang, Hyun-Gook;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.36-43
    • /
    • 1996
  • In this work, a PC-based thermal performance monitoring system is developed for the nuclear power plants. The system performs real-time thermal performance monitoring and diagnosis during plant operation. Specifically, a prototype for the KORI-2 nuclear power unit is developed and examined in this work. The analysis and the fault identification of the thermal cycle of a nuclear power plant is very difficult because the system structure is highly complex and the components are very much inter-related. In this study, some major diagnostic performance parameters are selected in order to represent the thermal cycle effectively and to reduce the computing time. The Fuzzy ARTMAP, a self-organizing neural network, is used to recognize the characteristic pattern change of the performance parameters in abnormal situation. By examination, this algorithm is shown to be able to detect abnormality and to identify the fault component or the change of system operation condition successfully. For the convenience of operators, a graphical user interface is also constructed in this work.

  • PDF

A Study on the Diagnosis of Thermal Performance in the Steam Turbine for Generation (발전용 증기터빈 열성능 진단에 관한 연구)

  • Kim, Kwang-Hong;Hong, Eun-Kee;Hwang, Kwang-Won;Jang, Chul-Ho;Kim, Si-Moon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3236-3240
    • /
    • 2007
  • This paper describes the results of steam turbine performance tests. The objectives of performance test is to exactly evaluate the degradation(decrease in performance) of the coal-fired steam turbine generator in order to provide plant information to help performance engineers identify problems, improve performance, and make economic decisions about scheduling maintenance and optimizing operation. To achieve these goals, the periodic thermal performance tests have been carried out since the initial operation period, 1997. We made the calculation program and guidelines for the tests and developed the performance index of the turbine cycle on the basis of the ASME PTC. By comparing the performance changes throughout the whole operation period, we confirmed the performance reliabilities of the turbine and its conditions.

  • PDF

Evaluation of Applicability of Steel-pipe Energy Piles Through Thermal Performance Test (TPT) (현장 열성능 평가시험을 통한 강관 에너지파일의 적용성 평가)

  • Lee, Seokjae;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • A novel steel-pipe energy pile is introduced, in which the deformed rebars for main reinforcing are replaced with steel pipes in a large diameter cast-in-place energy pile. Here, the steel pipes act as not only reinforcements but also heat exchangers by circulating the working fluid through the hollow hole in the steel pipes. Under this concept, the steel-pipe energy pile can serve a role of supporting main structures and exchanging heat with surrounding mediums without installing additional heat exchange pipes. In this study, the steel-pipe energy pile was constructed in a test bed considering the material properties of steel pipes and the subsoil investigation. Then, the thermal performance test (TPT) in cooling condition was conducted in the constructed energy pile to investigate thermal performance. In addition, the thermal performance of the steel-pipe energy pile was compared with that of the conventional large diameter cast-in-place energy pile to evaluate its applicability. As a result, the steel-pipe energy pile showed 11% higher thermal performance than the conventional energy pile along with much simpler construction processes.

A Study of Parametric Effects on the Thermal Performance of Flat-Plate Liquid-Heating Solar Collectors (평판형 액체식 집열기 의 각종 변수 가 집열기 의 열성능 에 미치는 영향)

  • 전문헌;윤석범;추교명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.145-153
    • /
    • 1984
  • In the present work, a computer simulation is performed employing Hottel-Whillier-Bliss model for thermal performance of solar collectors. The major collector parameters examined in the computer simulation are: number of transparent glass covers(N), thermal emissivity of the absorbing plate surface (.epsilon.$_{P}$), absorptivity of absorber plate (.alpha.$_{p}$), flow rate per unit area of collector (G), $L_{b}$ / $k_{b}$ of insulation material, tilt angle of collector (S), and solar insolation(I). By varying numerical values of the major collector parameters around their typical values, the corresponding variations in thermal efficiency curves are examined. In addition, an experimental investigation has been carried out with a slightly modified KAIST collector test loop under a real sun condition in order to compare with the simulation results, examine the applicability of the mathematical model of the collector thermal performance, and study the effect of variation of flow rate (G) on thermal efficiency and the range of optimum flow rate.e.

A Thermal Performance Test Loop Design for Liquid - Heating Solar Collectors (액체식 태양열 집열기의 열성능 평가시험 루우프 설계)

  • Chun, M. H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.110-121
    • /
    • 1983
  • ASHRAE 표준을 참고로 하여 한국과학기술원(KAIST)에서 수정한 집열기 시험 장치의 주요부품 의 설계도면 및 Specification 등을 제시하였다. 또한 ASHRAE 표준 시험 절차를 재분석하고 KAIST에서 수정한 Test Loop를 시험하기 위한 실험절차의 개요도 설명하였다. ASHRAE 표준 상의 가장 중요한 실험인 (1) 집열기 시간 상수 실험과 (2) 수직에 가까운 입사각에 대한 효율 실 험 및 (3) 입사각 수정 계수 실험 등을 실제 태양 아래에서 실험하여 그 결과도 그림으로 제시하 였다. 본 연구를 통해서 얻은 결과로부터 다음과 같은 결론을 얻을 수 있었다. 한국 과학 기술원 에서 설계한 집열기 시험 장치는 ASHRAE의 표준 절차에 따라 액체 가열식 집열기의 열효율을 측정하기 위한 실용적 장치임을 알 수 있다. 일반적으로 ASHRAE 표준 93-77은 합리적인 절차 라고 할 수 있다. 그러나, 최소일사량 규정(즉 630W/m$^{2}$ 미만이 되어서는 안된다고 하는 ASHRAE 규정) 같은 것은 일사량이 적은 기후 조건하에서는 다소 하향 조정하여도 정확한 효율 곡선을 얻을 수 있다고 하겠다.

Evaluation on in-situ Thermal Performance of Coaxial-type Ground Heat Exchanger with Different Configurations (이중관형 지중열교환기 구성에 따른 현장 열성능 평가)

  • Lee, Seokjae;Jung, Hyun-seok;Oh, Kwanggeun;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.8-15
    • /
    • 2019
  • In order to design coaxial-type Ground Heat Exchangers (GHEXs) efficiently, the effect of components (i.e, heat exchange pipe and grouting material) on the thermal performance of coaxial-type GHEXs should be identified in advance. In this paper, three coaxial-type GHEXs with different configurations were constructed in a test bed. Then, the effect of heat exchange pipes and grouting materials on the thermal performance of coaxial-type GHEXs was investigated by performing in-situ thermal response tests (TRTs) and thermal performance tests (TPTs). In the TRTs, the effective thermal conductivities of the coaxial-type GHEXs with concrete grouting and STS pipes were improved by 6.15 and 22.7%, respectively compared to those of bentonite grouting and HDPE pipes. Additionally, in the TPTs, the use of concrete grouting and STS pipes in the coaxial-type GHEXs enhanced the in-situ thermal performance by 15 and 33.8%, respectively.

Development of Thermomechanical Coupled Numerical Model for Energy Slab (에너지 슬래브의 열-역학적 수치해석 모델 개발)

  • Park, Sangwoo;Choi, Hangseok;Lee, Seokjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.55-63
    • /
    • 2024
  • In this study, a thermomechanical numerical model was developed to evaluate the stability of energy slabs. First, a wall-type energy slab was installed in a residential underground parking lot, and thermal performance tests were conducted. Based on the tests, a numerical thermohydraulics model of the energy slab was developed to accurately simulate the thermal behavior in thermal performance tests. Finally, utilizing the temperature data acquired using the developed model, a thermomechanical numerical model of the energy slab was established. The thermomechanical model was then used to simulate the thermal stresses induced by operating the energy slab. The results demonstrated a maximum thermal stress of 5,300 kPa, which highlights the need to utilize cement mortar with sufficient tensile strength to realize stable operation of the energy slab.

Analysis on the View Factor of Data Storage and Handling Units's Radiators (자료처리/저장장치 방열판의 View Factor 분석)

  • Hwang, Inyoung;Shin, Somin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.678-685
    • /
    • 2017
  • The radiator of the data storage and handling units onboard the earth observation satellite is a groove-type radiator covered with a shield because of the periodic high heat dissipation and design characteristics of arrangement and mountability of the unit. The effect of the groove-type radiator and that of the shield versus plane radiator were verified through the thermal vacuum test. Through the test result, the temperatures of the radiator and the heat exchange due to the view factor were analyzed by using the analytical method. Conclusively the thermal performance of the shield dissipation plate was verified.

Studies on the heat performance and stability for multi spray type desuperheater of the power plant (발전소용 다중 스프레이형 과열저감기의 열성능 및 안정성에 관한 연구)

  • Cho, Nam-Cheol;Lee, Deok-Gu;Lee, Chae-Moon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.185-190
    • /
    • 2011
  • The important use of the desuperheater(multi spray type) changes the superheated steam into the saturated steam. It is more efficient and suitable for using the process. Also, it is more convenient and stable regarding the process temperature control. In this study, transient and quasi-static analysis were done for the evaluation of structural integrity of the multi spray type desuperheater of the power plant. Computational analysis was used to calculate the thermal stress, and the vibration test was done to evaluate the structural stability. This paper is verified by analysis that water spray nozzle(${\phi}=28mm$) shows the best ability. The results show that structural stability of the desuperheater under the real operating condition was proven.

  • PDF