• Title/Summary/Keyword: 열분해 층

Search Result 160, Processing Time 0.025 seconds

Study on basic characteristics for utilization of bituminous pyrolysis by-products (인도네시아 역청 열분해 무기 부산물의 활용을 위한 기초 특성 연구)

  • Jang, Jung Hee;Han, Gi Bo;Park, Cheon-Kyu;Jeon, Cheol-Hwan;Kim, Jae-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.892-898
    • /
    • 2017
  • In this study, the basic properties of recoverable gaseous and solid materials were investigated from heavy oil contained in the resources. The basic characteristics of pyrolysis reaction for the conversion of bituminous oil to pyrolysis various temperature were investigated. The characteristics of gas and solid phase byproducts were also investigated with a laboratory scale fixed bed reactor according to various reaction temperature. As a result, it was confirmed that the oil yield was about 17% at $550^{\circ}C$ and $CH_4$, $CaCO_3$ and CaO could be recovered as by-products.

Analysis of Employment Effect of the Minimum Wage Using Time Series Data (시계열 자료를 이용한 최저임금의 고용효과 분석)

  • Kang, Seungbok;Park, Cheolsung
    • Journal of Labour Economics
    • /
    • v.38 no.3
    • /
    • pp.1-22
    • /
    • 2015
  • We analyze the effect of the minimum wage on employment using time series data forr groups of individuals most affected by the minimum wage: young males (18 to 24 years old), young females (18 to 22 years old), old males (60 years and older) and old females (60 years and older). Our findings are as follows. First, a unit root test says that the variables like minimum wages and employments are non-stationary variables and they have cointegrational relations each other. It says that in this case, VEC is more suitable than OLS or VAR. Second, an increase of the minimum wage is found to have a weak but persistently negative effect on employment.

  • PDF

Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed (카본블랙 촉매를 이용한 유동층 반응기에서 메탄의 직접 열 분해에 의한 수소생산 연구)

  • Jung, Jae-Uk;Nam, Woo-Seok;Yun, Ki-Jun;Lee, Dong-Hyun;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.284-287
    • /
    • 2005
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2 - free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane decomposition reaction was carried out at the temperature range of $850-925^{\circ}C$, methane gas velocity of $1.0U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

Recent Development of Thermo-chemical Conversion Processes with Fluidized Bed Technologies (유동층 공정을 이용한 열화학적 전환 공정의 최신 개발 동향)

  • Hyun Jun Park;Seung Seok Oh;Olusola Nafiu Olanrewaju;Jester Lih Jie Ling;Chul Seung Jeong;Han Saem Park;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.8-18
    • /
    • 2023
  • Increasing of energy demand due to the rapid growth of global population and the development of world economy has inevitably resulted in the continuously increase of fossil fuel usage in the world. However, highly dependence on fossil fuels has necessarily brought about critical environmental issues and challenges such as severe air pollutions and rapid global warming. In order to settle these environmental and energy problems, clean energy generations in the conventional combustion processes have widely adapted in the world. In particular, novel thermochemical conversion processes such as pyrolysis and gasification have rapidly been applied for generating clean energy. Fluidized bed technologies having advantages such as various fuel use, easy continuous operation, high heat and material transfer, isothermal operation, and lower operation temperature are widely adopted and used because they are suitable for thermochemical energy conversion. The latest research trends and important findings in the thermo-chemical conversion process with fluidized bed technologies are summarized in this review. Also, the need for research such as layered materials and substances to reduce fine dust (biomass, natural resource waste, etc.) was suggested. Through this, it is intended to increase interest and understanding in fluidized bed technology and to present directions for solving future challenges in fluidized bed process technology development.

Characteristics of Fluidized Bed Type Gasification of Kideco Coal (키데코탄의 유동층 가스화 반응 특성)

  • Bae, Dal-Hee;Jo, Sung-Ho;Shun, Do-Won;Moon, Young-Sub
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.32-39
    • /
    • 2007
  • Coal pyrolysis processes vary with the origin and rank of coal. It is difficult to generalize the characteristics of coal pyrolysis reaction because the process consists of numerous reactions including pyrolysis, gasification, and combustion. To find out the optimum process condition it is necessary to determine the condition fur each coal from the smatter scale experiment. In this study pressurized ($2kg_{f}/cm^{2}$) fluidized bed, low temperature ($735{\sim}831^{\circ}C$) gasification using Kideco coal was performed. The reaction condition and product gas composition were determined from the variables including steam flow rate, coal feed rate and air flow rate. Optimum reaction condition was determined from the concentrations of $H_{2}$, and CO in the product gas. The ratio of air/coal was 4.45 and that of steam/coal was 0.21 respectively. The concentrations of CO and $H_{2}$ decreased with the increase of $CO_{2}$. It is important to control the feed rates of coal and steam because the reaction temperature rapidly increased when the combustion reaction dominates over the gasification reaction. The concentrations of CO and $H_{2}$ were 18%, 17% respectively from the continuous operating condition.

Analysis of Automotive Paints using Pyrolysis-Gas Chromatography (열분해-가스크로마토그라피에 의한 자동차 페인트 분석)

  • Shon, Sung-Kun;Park, Ha-Sun;Lee, Jin-Sook;Hong, Sung-Wook;Park, Sung-Woo;Cho, Sung-Hye
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.101-107
    • /
    • 2000
  • The automotive paints could be generally differentiated by color, layer sequence and chemistry of the paint layers comprising each of the topcoat and the primer system. The successful identification of hit-andrun a and traffic accidental vehicles from evidential paint fiagments is greatly facilitated with a comprehensive laboratory collection of reference paint samples and the technique for direct analysis without sample preparation. The Pyrolysis-Gas Chromatography(PGC) is a precise and reliable method for performing both quantitative and qualitative analysis of polymeric materials and forensic samples. Our Forensic Laboratory is conducting the examination and identification of 73 reference paint samples; 4 colors of each domestic automotive make that is popular in Korea, by Curie Point Pyrolyzer(JHP-3) and GC with capillary column(ultra alloy-5). This method can be used not only to compare paint traces with their suspected sources, but also to identify the type, make and model of the automotive car.

  • PDF

Analysis of Boundary Layer in Solid Rocket Nozzle and Numerical Analysis of Thermal Response of Carbon/Phenolic using Finite Difference Method (고체 로켓 노즐의 경계층 해석과 유한차분법을 이용한 탄소/페놀릭의 열반응 해석 연구)

  • Seo, Sang Kyu;Hahm, Hee Cheol;Kang, Yoon Goo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 2018
  • The thermal response of carbon/phenolic used in a solid rocket nozzle liner was analyzed. In this paper, the numerical analysis of the thermal response of carbon/phenolic consists of (1) the integration equation of the boundary layer to obtain the convective heat transfer coefficient of the combustion gas on the rocket nozzle wall and (2) 1-D finite difference method for heat conduction of carbon/phenolic to calculate the ablation, char, and temperature. The calculated result was compared with the result of a blast-tube-type test motor. It is found that the calculated result shows good agreement with the thermal response of the test motor, except at the vicinity of the throat insert.

A Study on the Heat Storage System for Chemical Heat Pump Using Inorganic Hydrates(I) - Heat Storage Characteristics - (화학열펌프에 있어서의 무기수화물계 축열시스템에 관한 연구(I) - 탈수 축열 성능연구 -)

  • Park, Young-Hae;Kim, Jong-Shik
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.29-38
    • /
    • 1995
  • The heat-storage characteristics accompanied by exothermic reaction at the regeneration of $Ca(OH)_2$ in tile heat-storage mode of a chemical heat pump system using a $Ca(OH)_2/CaO$ reversible thermochemical reaction was examined in a lab-scale unit. In this heat-storage mode, the particle bed of CaO could be regenerated by heating the $Ca(OH)_2$ packed bed to the higher temperature at which the equilibrium pressure in the reactor is greater than the water vapor pressure in the condenser. The results are i) the dehydration, thermal decomposition, rate of $Ca(OH)_2$ was higher at the lower part of particle bed than at the upper part, ii) in the reactor, the dehydration was proceeded along radial and axial direction, from inner part to the outer part, which explains heat transfers from the center to wall and from the tenter to lower or upper part of reactor.

  • PDF

Stress Development in Sol-gel Derived Multideposited Coatings of Lead Zirconate Titanate (다층 도포된 $\textrm{PbZr}_{0.53}\textrm{Ti}_{0.47}\textrm{O}_{3}$ sol-gel 박막내의 응력 거동)

  • Park, Sang-Myeon
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1069-1074
    • /
    • 1999
  • 본 연구에서는 PbZr(sub)0.53Ti(sub)0.47O$_3$(PZT) 박막을 복수 도포함에 따른 박막내의 응력을 온도의 함수로 실시간(in situ) 측정하였으며, 응력발생의 원인에 박막의 건조, 열분해(pyrolysis), 치밀화 및 결정화 현상과 연관시켜 설명하였다. 도포직후 단층박막에 생성된 55MPa의 인장응력은 가열됨에 따라$ 300^{\circ}C$-$350^{\circ}C$에서 최대 145MPa로 증가하였으며, 박막내의 응력은 모든 온도구간에서 항상 인장응력을 나타내었더. 다층도포시 $650^{\circ}C$까지 열처리 주기를 완료한 층이 두꺼워질수록 새로 도포한 층의 영향은 점차 감소하였으며, 9층박막에 이르러서는 가열과 냉각에 따라 응력이 동일하게 변화하였다. 응력측정 결과 다층박막의 치밀화는 $350^{\circ}C$에서 시작되어 $520^{\circ}C$-$550^{\circ}C$ 부근에서 완료되는 것으로 나타났으며 치밀화가 시작하는 온도는 미세경도 측정결과와 일치하였다. $PbTiO_3$(PT)와 달리 PZT 다층박막은 Si 기판 위에서 perovskite로의 결정화가 일어나지 않았다.

  • PDF

Evaluation of Heat Resistance of Lyocell-based Carbon/Phenolic for Aerospace (항공우주용 리오셀계 탄소/페놀릭 복합재료의 내열 성능 평가)

  • Seo, Sang-Kyu;Kim, Yun-Chul;Bae, Ji-Yeul;Hahm, Hee-Chul;Hwang, Tae-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.355-363
    • /
    • 2021
  • Heat resistance performance evaluation and thermal analysis were performed to confirm the applicability of the lyocell-based carbon/phenolic composite material for heat-resistant parts for aerospace. Heat resistance performance evaluation of carbon/phenolic was conducted by Thermal Protection Evaluation Motor (TPEM). In this paper, boundary layer integration code considering the boundary layer analysis of combustion gas and MSC-Marc 2018 considering ablation and thermal pyrolysis were used for the thermal analysis. The ablation and thermal insulation performance were analyzed by the pressure curve of test motor and the cut carbon/phenolic specimens. The thermal response of the lyocell-based carbon/phenolic material was similar to that of the rayon-based carbon/phenolic material. Based on the results through the combustion test, the applicability of heat-resistant parts for aerospace to which domestic lyocell-based carbon fibers were applied was confirmed.