• Title/Summary/Keyword: 열변형 특성

Search Result 108, Processing Time 0.025 seconds

A Study on the Diode Laser Surface Hardening Treatment of Cast Iron for Die Material(II) -Comparison of Hardening Characteristics by the Parts Applied Heat Treatment- (금형재료용 주철의 다이오드 레이저 표면경화처리에 관한 연구(II) - 표면경화의 적용 부위에 따른 열처리 특성의 차이 -)

  • Kim, Jong-Do;Song, Moo-Keun;Hwang, Hyun-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1048-1054
    • /
    • 2011
  • Laser surface hardening process is the method of hardening surface by inducing rapid self quenching of laser injected area through transfer of surface heat to inside after rapid heating of laser injected area only by high density energy heat source. This surface treatment method does not involve virtually any thermal deformation by heat treatment nor accompanies any other process after surface hardening treatment. In addition, allowing local machining, this method is a surface treatment method suitable for die with complicated shape. In this study, die material cast iron was surface-treated by using high power diode laser with beam profile suitable for heat treatment. Since the shapes of die differ by press die process, specimens were heat-treated separately on plane and corner depending on the applied parts. At this time, corner heat treatment was done with optic head inclined at $10^{\circ}$. As a result, corner heat treatment easily involves concentration of heat input due to limitation of heat transfer route by the shapes compared with plane part, so the treatment accomplished hardening at faster conveying speed than plane heat treatment.

The study on the thermal deformation of the rotating rollers in strip continuous casting process (박판 연속 주조과정에 있어서 회전 로울러의 열변형에 관한 연구)

  • 백남주;이상매
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.913-922
    • /
    • 1987
  • In this paper the solidification phenomena at the molten pool has been modeled and simulated in terms with the one dimensional unsteady-state heat transfer of the solid and molten phase and the pressure distribution in the solid phase for the twin-roller continuous casting of Sn-15% Pb. The further purpose of this study was to effectively analyze the thermal and mechanical deformation of roll applying the results of the heat transfer and the pressure distribution to the boundary conditions. The strip thickness of rapidly solidified metallic strip decreases with increasing angular velocity of the roller and with increasing initial roll gap. For this reason the roll spacing and angular velocity of the rolls are considered to be main variables. The recommended optimal casting regimes for continuous strip dimensions is near 0.8mm-1.0mm in thickness at the given angular velocity .omega.=2.0 rad/sec. Results of the experiment using Sn-15% Pb are compared with model predictions. The calculated roll deformation has been in good agreement with the observed value of roll deformatiion. All the deformation. All the deformation of the roller is within the elastic range, the plastic yielding are not occured. However, these elastic stresses are sufficient to take place of the shortened roller life by the thermal fatigue and a notch fatigue. The higher cooling rates were obtained by a twin-roller quenching technique. Also the quenched microstructure of the rapidly solidified shell was verified.

A Study on Nondestructive Technique Using Laser Technique for Evaluation of Carbon fiber Reinforced Plastic (레이저를 이용한 탄소섬유강화 복합재료의 비파괴평가 기법에 관한 연구)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Byun, Joon-Hyung;Seo, Kyeong-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 2005
  • Fiber reinforced plastic material should be inspected in fabrication process in order to enhance quality by prevent defects such as delamination and void. Generally, ultrasonic technique is widely used to evaluate FRP. In conventional ultrasonic techniques, transducer should be contacted on FRP. However, conventional contacting method could not be applied in fabrication process and novel non-contact evaluating technique was required. Laser-based ultrasonic technique was tried to evaluate CFRP plate. Laser-based ultrasonic waves propagated on CFRP were received with various transducers such as accelerometer and AE sensor in order to evaluate the properties of waves due to the variation of frequency. Velocities of laser-based ultrasonic waves were evaluated for various fiber orientation. In addition, laser interferometry was used to receive ultrasonic wave in CFRP and frequency was analysed.

Efficient Modal Analysis of Prestressed Structures via Model Order Reduction (모델차수축소법을 이용한 프리스트레스 구조물의 효율적인 고유진동해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1211-1222
    • /
    • 2011
  • It is necessary to use prestressed modal analysis to calculate the modal frequencies and mode shapes of a prestressed structure such as a spinning blade, a preloaded structure, or a thermally deformed pipe, because the prestress effect sometimes causes significant changes in the frequencies and mode shapes. When the finite element model under consideration has a very large number of degrees of freedom, repeated prestressed modal analyses for investigating the prestress effects might become too computationally expensive to finish within a reasonable design-process time. To alleviate these computational difficulties, a Krylov subspace-based model order reduction, which reduces the number of degrees of freedom of the original finite element model and speeds up the necessary prestressed modal analysis with the reduced order models (ROMs), is presented. The numerical process for the moment-matching model reduction is performed directly on the full order models (FOMs) (modeled in ANSYS) by the Arnoldi process. To demonstrate the advantages of this approach for performing prestressed modal analysis, the prestressed wheel and the compressor impeller under their high-speed rotation are considered as examples.

Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation (열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석)

  • Byun, Sangwon;Kim, Youngshin;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

A Study on the Mechanical and Combustion Characteristics According to Fiber Reinforcements Weight Fraction of FRTP (섬유강화재 함유율에 따른 FRTP의 기계적 특성 및 연소특성에 관한 연구)

  • Kim, Kyoung-Jin;Eom, Sang-Yong;Kim, Ki-Hwan
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.21-28
    • /
    • 2019
  • To examine the mechanical and combustion characteristics of FRTP, either polycarbonate or nylon were used as a matrix, and either glass fiber or carbon fiber were used as the fiber reinforcement. The fiber reinforcement content was differentiated at 0~40 wt%. The tensile strength and heat distortion temperature increased with increasing reinforcement content. When the fiber reinforcement content was above 30 wt%, the flammability rating showed V-0. As the fiber reinforcement content increased from 0 to 40 wt%, the peak heat release rate of polycarbonate decreased by approximately 51% and that of nylon decreased by approximately 24%. The rate of CO generation decreased for a period of time, and then increased. This appears to have resulted from incomplete combustion. The rate of CO2 generation shows a similar tendency with the heat release rate. As fiber reinforcement content levels increased from 0 to 40 wt%, the CO2 peak rate of polycarbonate generation decreased by approximately 50% and that of nylon decreased by 28%.

Heat Generation Characteristics of Whirling Spindle for Ball Screw Machining (볼스크류 가공용 선회형 스핀들의 발열 특성에 관한 연구)

  • Moon, Hong-Man;Kim, Sang-Won;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.44-51
    • /
    • 2020
  • We studied the heating characteristics of a whirling spindle. This spindle is an important component of a whirling machine for turning a ball screw shaft. In the manufacturing process for a conventional ball screw shaft, a single tool is used to form a spiral in a lathe machine tool. Thereafter, a high-frequency heat treatment process is performed. Recently, a whirling-type cutting method has emerged. This method can perform hard turning in the rotating direction of the spiral portion of the ball screw shaft by rotating and mounting multiple tools. The whirling method can be applied to the heat-treated material. In this study, an experimental apparatus was constructed to analyze the whirling spindle. The experiment proceeded in four steps. The rotating speed of the whirling spindle was set to ISO random and sequential rising conditions. Cooling and non-cooling modes in the cooling jacket were tested. As a result of the above experiment, the heating characteristics of the whirling spindle were derived.

Effects of Alkali Treated Nano-kenaf Fiber in Polypropylene Composite upon Mechanical Property Changes (알카리로 처리된 나노케냐프 섬유가 PP 복합소재 내에서 기계적 물성 변화에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • The surface of nano-kenaf containing cellulose fibers was treated with alkali (NaOH) and their effects on the physical properties of the polypropylene (PP) composite were investigated. The treatment of alkali on the fibers increased the melt flow index (M.I.), elongation%, and impact strength, while it decreased the tensile strength, flexural modulus and heat deflection temperature (HDT) of the compound compared to the untreated one. It seemed the alkali treatment on the nano-kenaf fiber changed the character of the fiber due to removal of impurities and chemicals on the surface and resulted in decreased interfacial adhesion between the nano-fiber surface and the PP matrix and changed the character of the PP.

Concentration Effects on Improved Mechanical Properties of Chopped Kenaf Fiber Filled Polypropylene Composite (케냐프섬유로 강화된 PP복합재료내의 섬유의 함량이 기계적특성 향상에 미치는 효과)

  • Oh, Jeong-Seok;Lee, Seong-Hoon;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • The effects of chopped kenaf fiber concentration on mechanical property of polypropylene (PP) composite are investigated. The addition of kenaf increased the tensile strength, flexural modulus, impact strength, specific gravity, and HDT, while decreased the elongation%, flexural strength, and melt flow index. The increase of mechanical properties is due to increased surface area contacting between fiber and polymer matrix and fiber-fiber interaction. Volatile extractives in the kenaf seemed to decrease the interfacial adhesion between kenaf surface and PP.

Flow Characteristics, Mechanical Properties and Chemical Resistance of Polycarbonate/Polybutylene Terephthalate/Impact Modifier Blends (Polycarbonate/polybutylene Terephthalate/Impact Modifier 블렌드의 유동특성, 기계적 성질 및 내화학성)

  • 류민영
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.237-244
    • /
    • 2002
  • Mechanical properties, flow characteristics and chemical resistance of polycarbonate (PC)/polybutylene terephthalate (PBT) /impact modifier (IM) blends were investigated over the various composition ranges of PC and PBT. Mechanical properties of the PC/PBT/IM blends for different IMs, butadiene based IM and butyl acrylate based IM, were studied for various compositions of the IMs. Impact strength at low temperature was also observed. For the study of chemical resistance of the PC/PBT/IM blends, the blonds were dipped in organic solvent, thinner, and then variations of mechanical properties were analyzed. Tensile and flexural strengths were increased linearly and heat distortion temperature (HDT) also increased as PC content in the blends increased. Impact strength increased drastically as PC content increased up to 50 wt% and stayed stable value. Flowability decreased as PC content increased. Impact strengths of the blend were various for different IMs. Butyl acrylate based IM showed slightly higher impact strength than butadiene based IM for the temperature above $0^{\circ}C$. However, butadiene based IM showed remarkably higher impact strength than butyl acrylate based IM for the temperature below $0^{\circ}C$. Through the experiment of chemical resistance it was observed that tensile and flexural strengths decreased, and impact strength increased as PC content in the blends increased. PC in the blend would become mild and ductile when it contacted with organic solvent. Thus the impact strength increased while tensile and flexural strength decreased.