• Title/Summary/Keyword: 열교환망 합성기법

Search Result 3, Processing Time 0.019 seconds

Optimal Heat Exchanger Network Synthesis for Minimum Equipment Cost (최소 유틸리티 및 장치비를 위한 최적 열 교환망 합성)

  • 김경숙;조영상;김호기
    • Journal of Energy Engineering
    • /
    • v.1 no.1
    • /
    • pp.87-96
    • /
    • 1992
  • Two major difficulties with finding an optimal solution to the heat exchanger network synthesis problems are the large solutionspace and the uncertainty in the formulation of the annual cost function. In this work, to overcome the first difficulty a problem reduction technique was developed. The second difficulty was also removed by dividing the annual cost function into four cost items. The optimal network structure for minimum equipment cost is then obtained by repeatedly applying the problem reduction technique and the heuristics in turn. The efficiency and the superiority of the method is demonstrated by examining two selected example problems.

  • PDF

Energy Analysis in CO2 Membrane Separation Process via Heat Integration (열통합 기법을 통한 이산화탄소 막 분리공정 에너지 해석)

  • Kim, Seong Hun;Kim, Tae Yong;Kim, Beom Seok;Cho, Hyun-Jun;Yeo, Yeong Koo
    • Plant Journal
    • /
    • v.12 no.2
    • /
    • pp.24-30
    • /
    • 2016
  • The membrane separation processes have received attention due to advantages such as compactness, modularity, ease of installation, flexibility of operation, lower capital cost and lower energy consumption. In this study, we evaluated accuracy of cross-flow, co-current and counter-current models. With the most accurate model, we identified the operating conditions of the two-stage membrane separation and examined the effects of permeance and selectivity of the membrane by simulation. Futhermore, power requirements and operating cost savings due to the introduction of the heat exchanger were investigated by applying heat exchanger network synthesis technique in the two-stage membrane separation using vapor sweep.

  • PDF

Evaluation of Wind-Induced Vibration for Multiple Stacks Using Numerical Analysis (전산 해석을 이용한 다중연돌의 유체유발진동)

  • Yang, Kwangheok;Park, Chaegwan;Kim, Hyeonjoon;Baek, Songyoul;Park, Soontae
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • Wind-induced vibration is a phenomenon that a struture is oscillated due to wind force such as buffeting, vortex shedding wake and etc., which is one of important characteristics to be considered for design in case that stack has significant slenderness ratio or low natural frequency. International design standards of stack define several criteria for evaluating the suitability of stack design, which describe the required design considerations for each range of design parameters and provide the instruction to verify the stack design against wind-induced vibration simply. However, there is a limitation that they cannot provide quantitative information in case code requirement cannot be satisfied due to constraints of plant space or economical design. In order to overcome the limiation of code, integrated numerical analysis of computational fluid dynamics, harmonic analysis and finite element analysis were proposed to investigate wind-induced vibration for multiple stacks in actual plant. Simulated results of mutual wake interference effect between adjacent stacks were evaluated and compared to the criteria in international standards.

  • PDF