• Title/Summary/Keyword: 열가수분해

Search Result 12, Processing Time 0.03 seconds

Disintegration of sewage sludge using combined pre-treatment thermal hydrolysis and separation (열가수분해-고액분리 결합 공정을 적용한 하수슬러지의 가용화)

  • Lee, See-Young;Han, Ihn-Sup
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.107-114
    • /
    • 2021
  • This study applied with pre-treatment combined with thermal hydrolysis and seperation for disintegration of sludge. As results of particle size distribution D10, D50 and D90 of thermal hydrolyzed and centrifuged sludge was 8.6, 59.2 and 425.1 ㎛, which are lower than those of thermal hydrolyzed. The molecular weight distribution results showed that the thermal hydrolyzed sludge showed the highest proportion in the 10-100kDa range. But, Sludge, treated with combined pre-treatment, showed the highest proportion <1kDa range. Results of DOC and UVA254 found that the organic matters of hydrolyzed sludge composed high molecular weight component above 10kDa. While, the organic matters of sludge, treated by combined pre-treatment, composed relarively low molecular weight below 1kDa. The specific methane yield of hydrolyzed and centrifuged sludge was higher 1.7 times than that of only hydrolyzed sludge.

Disposal and Waste-to-Fuel of Infected Poultry with Avian Influenza(AI) Using Thermal Hydrolysis Reaction (열가수분해 반응을 이용한 조류인플루엔자(AI) 감염 가금류의 사체처리 및 연료화)

  • Song, Chul-Woo;Kim, Nam-Chan;Jeong, Guk;Ryu, Jae-Keun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.49-57
    • /
    • 2016
  • In this study, a thermal hydrolysis technology was used to treat the poultry carcasses that were killed due to Avian Influenza (AI) occurrence, as well as to determine the possibility of fueling for the resultant products. Experimental results showed that the poultry carcasses were liquefied except for sand, and showed the optimum efficiency at $190^{\circ}C$ and operating time of 60 minutes. It has been shown that liquid products obtained after thermal hydrolysis has good conditions for fuel conversion since it had high carbon contents and calorific value, as well as low ash content. In addition, it was possible to operate the thermal hydrolysis facility by using only the waste heat generated in the combustion without injecting the auxiliary fuel, and the exhaust gas generated in the combustion has a small influence on the atmosphere.

A Study on the Fuelization of Livestock Sludge Using Thermal Hydrolysis (열가수분해 반응을 이용한 가축분뇨 슬러지의 연료화에 관한 연구)

  • Song, Chul-Woo;Kim, Nam-Chan;Ryu, Jae-Keun;Kim, Jae-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.51-59
    • /
    • 2015
  • Livestock sludge contains high concentration of organic matter and some heavy metals. In case of discharging into the sea, it might have negative effects in the environment. In this study thermal hydrolysis reaction was applied for livestock sludge to determine the fuelization possibility and obtain the best operation conditions. Livestock sludges were thermally hydrolyzed at temperature range $170{\sim}210^{\circ}C$ in sealed high-temperature reactors. Liquid products and dewatered cakes were analyzed. The operation at $190^{\circ}C$ was found to be best effective condition. High heating value and low heating value were 5,050 kcal/kg and 4,740 kcal/kg, respectively. Therefore, fuelization of livestock sludge using thermal hydrolysis reactor is found to be highly effective.

A Study on Heat Transfer Characteristics according to Thermal Hydrolysis Reaction of Poultry Slaughter Waste (도계폐기물의 열가수분해 반응에 따른 열전달 특성 연구)

  • Song, Hyoung Woon;Jung, Hee Suk;Kim, Choong Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.95-103
    • /
    • 2015
  • The purpose of this study was performed to quantitatively measure the thermal conductivity of poultry slaughter waste with variation of reaction temperature for optimal design of thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dehydrated sludge related to the reaction temperature. As the reaction temperature increased, the dehydrated sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bond water in the sludge cells comes out as free water, which changes the dehydrated sludge from a solid phase to slurry of a liquid phase. As a result, the thermal conductivity of the its sludge was more than 2.11 times lower than that of the water at $20^{\circ}C$. However, the thermal conductivity of the sludge approached to $0.677W/m{\cdot}^{\circ}C$ of water at $200^{\circ}C$, experimentally substantiating liquefaction of the dehydrated sludge. Therefore, we confirmed that the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. And the thermal conductivity function related to reaction temperature was derived to give the boundary condition for the optimal design of the thermal hydrolysis reactor. The consistency of the calculated function was 99.69%.

Effect of the Pretreatment by Thermal Hydrolysis on Biochemical Methane Potential of Piggery Sludge (열가수분해 전처리가 양돈 슬러지의 메탄생산퍼텐셜에 미치는 영향)

  • Kim, Seung-Hwan;Kim, Ho;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.524-531
    • /
    • 2012
  • The objective of this study was to investigate the organic solubilization (SCOD) and improvement of methane production for pig slurry by thermal hydrolysis. A sludge cake was pretreated by thermal hydrolysis at different reaction temperatures (200, 220, 250, $270^{\circ}C$). Ultimate methane potential (Bu) was determined at several substrate and inoculum (S/I) ratios (1:9, 3:7, 5:5, 7:3 in volume ratio) by biochemical methane potential (BMP) assay for 73 days. Pig slurry SCOD were obtained with 98.4~98.9% at the reaction temperature of $200{\sim}270^{\circ}C$. Theoretical methane potentials ($B_{th}$) of thermal hydrolysates at the reaction temperature of $200^{\circ}C$, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$ were 0.631, 0.634, 0.705, $0.748Nm^3\;kg^{-1}-VS_{added}$, respectively. $B_u$ of $200^{\circ}C$ thermal hydrolysate were decreased from $0.197Nm^3\;kg^{-1}-VS_{added}$ to $0.111Nm^3\;kg^{-1}-VS_{added}$ with the changes of S/I ratio from 1:9 to 7:3, and also $B_u$ of different thermal hydrolysates ($220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$) showed same tendency to $B_u$ of $200^{\circ}C$ thermal hydrolysate according to the changes of S/I ratio. Anaerobic biodegradability ($B_u/B_{th}$) of $200^{\circ}C$ thermal hydrolysate at different S/I ratios was decreased from 32.2% for S/I ratio of 1:9 to 17.6% for S/I ratio of 7:3. $B_u/B_{th}$ of $220^{\circ}C$, $250^{\circ}C$, and $270^{\circ}C$ thermal hydrolysat were decreased from 36.4% to 9.6%, from 31.3% to 0.8%, and from 26.6% to 0.8%, respectively, with the S/I ratio change, respectively. In this study, the rise of thermal reaction temperature caused the decrease of anaerobic digestibility and methane production while organic materials of pig slurry were more solubilized.

Enhancement of anaerobic digestion of sewage sludge by combined process with thermal hydrolysis and separation (하수슬러지 혐기성 소화 효율 향상을 위한 열가수분해-고액분리 결합 공정)

  • Lee, See-Young;Han, Ihn-Sup
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • The purpose of this study was to evaluate the performance of novel process with thermal hydrolysis and separation as pre-treatment of anaerobic digestion (AD). The dewatered sludge was pre-treated using THP, and then separated. The separated liquid used as substrate for AD and separated solid was returned on THP(Thermal Hydrolysis Process). The degree of disintegration (DD, based on COD) using only THP found 45.1-49.3%. The DD using THP+separation found 76.1-77.6%, which was higher than only THP. As result from dual-pool two-step model, the ratio of rapidly degradable substrate to total degradable substrate found 0.891-0.911 in separated liquid, which was higher than only THP. However, the rapidly degradable substrate reaction constant (kF) of only THP and THP+separation were similar. This results found that dewatered sludge was disintegrated by THP, and then rapidly degradable substrate of hydrolyzed sludge was sorted by separation.

A Comparative Study on the Feasibility of Geosynthetics Clay Liner and Compacted Mixing Material Using By-products from Sewage Sludge to the Final Cover Materials in Landfills (하수 슬러지 부산물을 이용한 다짐혼합재 및 토목합성수지점토라이너의 최종복토 차단층재로의 적용성에 관한 비교연구)

  • Jeong, Ji-Hoon;Lee, Jai-Young;Lee, Myung-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.49-52
    • /
    • 2008
  • Most of waste sludge has generally been disposed in landfill site or dumped in the ocean, which will be banned by the content of its heavy metals according to London Dumping Convention in Korea. Therefore, environmentally friend methods are urgently required for the treatment and disposal of the sewage sludge. Thermal hydrolysis is one of the good treatment methods to solve the sludge problems. In this study, the physical and environmental testing was conducted to evaluate the feasibility of by-product cake from the thermal hydrolysis as liner or cover materials in landfill.

  • PDF

Separation of chlorine in a uranium compound by pyrohydrolysis and steam distillation, and its determination by ion chromatography (열가수분해 및 수증기증류에 의한 우라늄 화합물 중 염소 분리 및 이온크로마토그래피 정량)

  • Kim, Jung-Suk;Lee, Chang-Hun;Park, Soon-Dal;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • For the determination of chlorine in uranium compound, analytical methods by using a steam distillation and a pyrohydrolysis have been developed. The steam distillation apparatus was composed of steam generator, distilling flask and condenser etc. The samples were prepared with an aliquot of LiCl standard solution and a simulated spent nuclear fuel. A sample aliquot was mixed with a solution containing 0.2 M ferrous ammonium sulfate-0.5 M sulfamic acid 3 mL, phosphoric acid 6 mL and sulfuric acid 15 mL. The chloride was then distilled by steam at the temperature of $140^{\circ}C$ until a volume of $90{\pm}5\;mL$ is collected. The pyrohydrolysis equipment was composed of air introduction system, water supply, quartz reaction tube, combustion tube furnace, combustion boat and absorption vessel. The chloride was separated from powdered sample which is added with $U_3O_8$ accelerator, by pyrohydrolysis at the temperature of $950^{\circ}C$ for 1 hour in a quartz tube with a stream of air of 1 mL/min supplied from the water reservoir at $80^{\circ}C$. The chlorides collected in each absorption solution by two methods was diluted to 100 mL and measured with ion chromatography to determine the recovery yield. For the ion chromatographic determination of chlorine in molten salt retained in a metal ingot, the chlorine was separated by means of pyrohydrolysis after air and dry oxidation, and grinding for the sample.

A Study on Optimum Conditions Derivation on Thermal Hydrolysis of Food Wastewater and the Applicability of the Thermal Solubilization in Biological Denitrification Process (음폐수의 열가수분해 최적조건 도출과 생물학적 탈질공정에서 열가용화액의 적용 가능성에 관한 연구)

  • Lee, Ki Hee;You, Hee Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • The aim of this research is to derive an optimum operating condition for the thermal solubilization equipment that is employed to increase concentration of soluble organic materials and to assess whether it would be possible to use the waste sludge generated by thermal solubilization reaction as an external carbon source in biological denitrification process. For the purpose, we have constituted a laboratory-size thermal solubilization equipment and have assessed thermal hydrolysis efficiency based on various reaction temperature and reaction time. We have also derived SDNR using the waste sludge generated by thermal solubilization reaction through a batch experiment. As a result of research, the highest thermal hydrolysis efficiency of about 42.8% was achieved at $190^{\circ}C$ of reaction temperature and at 90 minutes of reaction time. And when SDNR was derived using the waste sludge, the value obtained was $0.080{\sim}0.094\;g\;NO_3{^-}-N/g\;MLVSS{\cdot}day$, showing SDNR that is higher than that obtained by the results of existing researches that used common wastewater as an external carbon source. Accordingly, in view of the fact that food wastes vary quite a bit in characteristics based on the area they are generated from and seasonal change, it seems that a flexible operation of thermal solubilization equipment is required through on-going monitoring of food wastes that are imported to food wastes recycling facilities.

Synthesis of Spherical ZrO2 Powders by Thermal Hydrolysis and Hydrothermal Crystallization (열가수분해 및 수열결정화에 의한 구형 ZrO2 분말의 합성)

  • Cho, Churl-Hee;Jin, Ming-Ji;Choi, Jae-Young;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.420-426
    • /
    • 2002
  • $ZrO_2$, $Y_2O_3$-doped $ZrO_2$ and CaO-doped $ZrO_2$ powders were prepared by hydrothermal crystallizing spherical $ZrO_2$ gel which had been synthesized by thermal hydrolysis reaction. After the hydrothermal crystallization process, the formed crystallized powders sustained its original spherical shape and had the mean particle size of $0.4{\mu}m$. The particles were composed of about 10nm sized primary particles. The agglomeration strength between the primary particles appears very weak considering that the spherical particles were broken into the primary particles during the pressing process. The particle shape, size, phase fraction and dopant content were analyzed and crystallization mechanism of spherical gel was discussed.