• Title/Summary/Keyword: 연 초과치 계열

Search Result 4, Processing Time 0.019 seconds

Comparison of Design Rainfalls From the Annual Maximum and the Non-annual Exceedance Series (연최대치계열과 비연초과치계열으로부터 산정한 확률강우량의 비교·분석)

  • Park, Yei Jun;Kwon, Hyun-Han;Chung, Eun Sung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.469-478
    • /
    • 2014
  • The annual maximum series (AMS) is usually used to estimate hydrological quantiles in practice because it is simple to construct and straightforward to probabilistic interpretation. However, it is limited to use the AMS in Korea due to the lack of reliable observed data which leads to the overestimation of design rainfall and/or flood. Using the 40-year observations of rainfall provided by the Korea Meteorological Administration, this study constructed the AMS and non-annual exceedance series (NAES) after identifying the independent storm event, analyzed the correlation between design rainfalls estimated from the AMS and NAES, and proposed a new method of point frequency analysis to estimate design rainfalls from the small number of observations.

An Analysis on the Changes of flow Duration Characteristics due to Dam Construction (댐 건설에 따른 하류 유황의 변화 분석)

  • Kim, Tae-Gyun;Yoon, Yong-Nam;Ahn, Hae-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.807-816
    • /
    • 2002
  • The purpose of the present study was to evaluate the changes of flow duration characteristics of a large river basin due to construction of a dam. The changes of water surface are quantified from remote sensing film taken before and after dam construction. Gongiu gauging station was selected to analyze the changes of flow duration, and annual exceedance series of Gongju and Kyuam gauging station were selected to estimate the changes of flood quantile before and after dam construction. From the analysing results, it was found that the construction of dam contributes to make new duration stable and to decrease flood flow. In conclusion, it was confirmed that the construction of the dam is useful for water supply and flood prevention.

Development of a New Flood Index for Local Flood Severity Predictions (국지홍수 심도예측을 위한 새로운 홍수지수의 개발)

  • Jo, Deok Jun;Son, In Ook;Choi, Hyun Il
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.47-58
    • /
    • 2013
  • Recently, an increase in the occurrence of sudden local flooding of great volume and short duration due to global climate changes has occasioned the significant danger and loss of life and property in Korea as well as most parts of the world. Such a local flood that usually occurs as the result of intense rainfall over small regions rises quite quickly with little or no advance warning time to prevent flood damage. To prevent the local flood damage, it is important to quickly predict the flood severity for flood events exceeding a threshold discharge that may cause the flood damage for inland areas. The aim of this study is to develop the NFI (New Flood Index) measuring the severity of floods in small ungauged catchments for use in local flood predictions by the regression analysis between the NFI and rainfall patterns. Flood runoff hydrographs are generated from a rainfall-runoff model using the annual maximum rainfall series of long-term observations for the two study catchments. The flood events above a threshold assumed as the 2-year return period discharge are targeted to estimate the NFI obtained by the geometric mean of the three relative severity factors, such as the flood magnitude ratio, the rising curve gradient, and the flooding duration time. The regression results show that the 3-hour maximum rainfall depths have the highest relationships with the NFI. It is expected that the best-fit regression equation between the NFI and rainfall characteristics can provide the basic database of the preliminary information for predicting the local flood severity in small ungauged catchments.

The Recent Increasing Trends of Exceedance Rainfall Thresholds over the Korean Major Cities (한국의 주요도시지점 기준강수량 초과 강수의 최근 증가경향 분석)

  • Yoon, Sun-Kwon;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.117-133
    • /
    • 2014
  • In this study, we analysed impacts of the recent increasing trend of exceedance rainfall thresholds for separation of data set and different research periods using Quantile Regression (QR) approach. And also we performed significant test for time series data using linear regression, Mann-Kendall test and Sen test over the Korean major 8-city. Spring and summer precipitation was tend to significant increase, fall and winter precipitation was tend to decrease, and heavy rainy days in last 30 years have increased from 3.1 to 15 percent average. In addition, according to the annual ranking of rainfall occurs Top $10^{th}$ percentile of precipitation for 3IQR (inter quartile range) of the increasing trend, most of the precipitation at the point of increasing trend was confirmed. Quantile 90% percentile of the average rainfall 43.5mm, the increasing trend 0.1412mm/yr, Quantile 99% percentile of the average rainfall 68.0mm, the increasing trend in the 0.1314mm/yr were analyzed. The results can be used to analyze the recent increasing trend for the annual maximum value series information and the threshold extreme hydrologic information. And also can be used as a basis data for hydraulic structures design on reflect recent changes in climate characteristics.