• Title/Summary/Keyword: 연영전

Search Result 17, Processing Time 0.027 seconds

High Frequency Soft Switching Forward DC/DC Converter (고주파 소프트 스위칭 Forward DC/DC 컨버터)

  • 김은수;최해영;조기연;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.19-25
    • /
    • 1999
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.

Phase Control of ZVT Interleaved Bi-directional LDC for Reducing Conduction Losses in Zero-Current Mode (영전류 모드 도통손실 저감을 위한 ZVT Interleaved Bi-directional LDC의 위상 제어)

  • Jung, Won-Sang;Lee, Soon-Ryung;Lee, Jong-Young;Park, Yun-Ji;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.367-368
    • /
    • 2017
  • 본 논문에서는 영전류 모드로 진입한 zero voltage transition(ZVT) interleaved bi-direction low voltage DC-DC converter(IB-LDC)의 도통 손실을 최소화하기 위한 위상 제어가 제안된다. IB-LDC의 출력단 배터리가 완충되어 영전류 모드로 진입하면 IB-LDC의 입 출력 평균 전류는 0[A]로 감소하지만 보조 회로 전류는 기존의 설계 값에 의해 감소하지 않아 지속적인 도통 손실을 일으킨다. 따라서 본 논문에서는 영전류 모드로 진입한 IB-LDC의 보조 회로에 ZVT 조건을 만족시키는 공진 전류만 흐르도록 하여 도통 손실을 최소화하는 위상 제어를 제안하였다. 또한 PSIM simulation 및 실험을 통해 증명하였다.

  • PDF

Soft Switching Boost Converter for High Efficiency Photovoltaic System (고효율 태양광 발전을 위한 소프트 스위칭 부스트 컨버터)

  • Cha, Gil-Ro;Won, Chung-Yuen;Jung, Yong-Chae;Kim, Young-Real
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.37-39
    • /
    • 2007
  • 기존의 부스트 컨버터에 보조 스위치와 다이오드, 공진 인덕터와 공진 커패시터를 추가하여 소프트 스위칭을 위한 보조회로가 포함된 새로운 구조의 태양광 발전용 부스트 컨버터를 제안하였다. 공진 인덕터에 의해 스위치의 턴 온 시 영전류 스위칭을 하고, 공진 커패시터에 의해 스위치 턴 오프 시 영전압 스위칭을 함에 따라 스위칭 손실을 줄일 수 있다. 제안된 회로의 동작모드를 분석하고, 제안된 회로의 검증을 위해 PSIM 시뮬레이션을 통해 모의실험 하였다.

  • PDF

A Family of Zero Current and Zero Voltage Switching Bidirectional DC-DC Converter with Soft Switched Auxiliary Circuit (소프트 스위칭 방식의 보조 회로를 갖는 영전류 및 영전압 스위칭 양방향 DC-DC 컨버터)

  • Lee, Il-Ho;Kim, Jun-Gu;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.438-439
    • /
    • 2011
  • In this paper, soft switching bidirectional DC-DC converter is proposed. The proposed topology is added two auxiliary switches, two resonant capacitors and one resonant inductor to convectional bidirectional DC-DC converter. Therefore, this proposed topology can reduce switching loss of each power switch by ZVS (Zero Voltage Switching) and ZCS (Zero Current Switching). We have performed mode analysis, simulation and experiment for the proposed topology.

  • PDF

탭인덕터와 스너버 캐패시터를 이용한 영전압 영전류 스위칭 DC/DC 컨버터

  • Kim E.S.;Byun Y.B.;Joe K.Y.;Kim T.J.;Kim Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.689-693
    • /
    • 2001
  • The conventional three-level high frequency phase-shifted dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current and RMS current stress, conduction losses of transformer and switching devices increases. To alleviate these problems, we propose an improved three-level Zero Voltage and Zero Current Switching (ZVZCS) dc/dc converter using a tapped inductor, a snubber capacitor and two snubber diodes attached at the secondary side of transformer. The proposed ZVZCS converter is verified on a 10 kW, 30kHz experimental prototype.

  • PDF

Zero-Voltage-Switching High Frequency Inverter for Electrodeless Fluorescent Lamp (무전극 램프 구동용 영전압 스위칭 고주파 인버터에 관한 연구)

  • Park, Dong-Hyun;Kim, Hee-Jun;Joe, Kee-Yun;Kye, Mun-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.113-119
    • /
    • 1998
  • Driving the electrodeless fluorescent lamp, the high ac voltage with high frequency is required. The linear power amplifier has been widely used as a driving circuit of electrodeless fluorescent lamp. However, the low efficiency of the power amplifier causes the driving circuit to be replaced by a PWM switching inverter. In order to use a PWM switching inverter as the driving circuit to be replaced by a PWM switching inverter. In order to use a PWM switching inverter as the driving circuit of an electrodeless fluorescent lamp, the high switching frequency is required. But due to the switching loss at switches of the inverter, the limitation of high switching frequency appears in the inverter. One solution to this limitation is to reduce the switching loss by using the zero voltage switching technique. In this paper, zero voltage switching resonant inverter for driving an electrodeless fluorescent lamp is discussed. The results of analysis about the inverter are presented and the equations for design are established. And the validity of the analyzed results are verified through the experiment.

  • PDF

A ZV-ZCT Boost Converter using an Auxiliary Resonant Circuit (보조 공진회로를 갖는 영전압-영전류 천이 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jun-Gu;Ryu, Dong-Kyun;Song, In-Beom;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.298-305
    • /
    • 2012
  • This paper proposes a soft switching boost converter with an auxiliary resonant circuit. The auxiliary resonant circuit is added to a general boost converter and that is composed of one switch, one diode, one inductor and two capacitors. The resonant network helps the main switch to operate with a zero voltage switching(ZVS) and auxiliary switch also operates under the zero voltage and zero current conditions. The soft switching range is extended by the auxiliary switch and it is possible to control the proposed converter with a pulse width modulation(PWM). The ZVS and ZCS techniques make switching losses decreased and efficiency of the system improved. A theoretical analysis is verified through the simulation and experiment.

Soft Switching Boost Converter using a Single Switch (단일 스위치를 사용한 소프트 스위칭 부스트 컨버터)

  • Jung, Doo-Yong;Kim, Jae-Hyeng;Ji, Young-Hyok;Won, Chung-Yuen;Jung, Yong-Chae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.211-219
    • /
    • 2009
  • In this paper, a detailed analysis of zero current or zero voltage switching boost converter using a single switch is described. The proposed topology is capable of decreasing switching loss of IGBT device using soft switching technique. As a results, it can be reduced size and weight of passive elements. Based on the mode analysis, practical design considerations are presented. We confirm the converter topology, principle of operation and simulation results obtained from the PSIM software. The performance of the proposed converter is verified by with 1kW(400V, 2.5A) prototype circuit operated at 30kHz.

BUCK Converter with Zero Voltage Regulation Function (영전압 Regulation기능을 가진 BUCK 컨버터)

  • Park, J.M.;Kwak, D.G.;Kim, E.S.;Kye, M.H.;Kang, Y.R.;Joe, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.447-449
    • /
    • 1996
  • The main objective of this paper is to increase the efficiency, to eliminate the harmonics wave and to acomplish the zero voltage regulation of the output voltage. To accomplish the goal, DC-to-DC converter model with ERS(Energy Recovery Snubber) is developed. And, to realize the detail purpose, we are used ZVS soft switching snubber, ripple steering filter and, function control law etc.. So, we presented to show superior operation of this convertor with the zero voltage regulation function.

  • PDF