• Title/Summary/Keyword: 연약지반 압밀

Search Result 332, Processing Time 0.028 seconds

A Study on Applicability of the Calculation Method for Settlement of Stone Column (쇄석말뚝의 침하량 산정방법 적용성에 관한 연구)

  • Han, Sangsoo;Jung, Suntae;Lee, Jinhyung;Kim, Bokyoung;Kim, Kyungmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.5-12
    • /
    • 2016
  • Stone column is the method that replace soft ground such as weak clay and loose sand with gravel or crushed stone which has relatively high stiffness and low compressive. Stone column increases bearing capacity of the soft ground, reduces settlement, produces ground improvement effect by consolidation drain, and is effective to prevent soil liquefaction in sandy ground during an earthquake. Stone column has been used in many civil works, and has recorded quite a lot of construction achievement internationally, but there is no standardized settlement calculation method yet. Therefore, in this study, the applicability of the existing theoretical equations were evaluated through comparison and analysis to predict a reasonable settlement of the Stone column. Consequently, Hook's law formula was verified to be the most close to numerical analysis.

Estimation on Discharge Capacity of Prefabricated Vortical Drains Considering Influence Factors (영향인자를 고려한 연직배수재의 통수능 평가)

  • Shin Eun-Chul;Park Jeong-Jun;Kim Jong-In
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.13-23
    • /
    • 2005
  • The prefabricated vertical drains (PVDs) are one of the most widely used techniques to accelerate the consolidation of soft clay deposits and dredged soil. Discharge capacity is one of the factors affecting the behavior of PVDs. In the field, a PVD is confined by clay or dredged soil, which is normally remolded during PVD installation. Under field conditions, soil particles may enter the PVD drainage channels, and the consolidation settlement of the improved subsoil may cause 131ding of the PVD. These factors will affect the discharge capacity of the PVDs. In this study an experimental study was carried out to estimate the discharge capacity of three different types of PVDs by utilizing the large-scale laboratory model testing and small-scale laboratory model testing equipments. The several factors such as confinement condition (confined by soft marine clay or dredged soil) and variations of the discharge capacity were studied with time under soil specimen confinement, The test results indicated that discharge capacity decreases with increasing load, time, and hydraulic gradient. With load application, the cross-sectional area of the drainage channel of PVD decreases because the filter of PVD is pressed into the core. The discharge capacity of the soft marine clay-confined PVDs is much lower than that of the dredged soil-confined PVDs.

A Study on the Horizontal Drainage Method Using Plastic Drain Board (플라스틱 배수재를 이용한 수평배수공법에 관한 연구)

  • 황정규;김홍택;김석열;강인규;김승욱
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.93-112
    • /
    • 1998
  • In the present study, 2-D consolidation theory of the dredged clay by means of the horizontal drain method is proposed. The horizontal drain method to install the drains such as plastic drain board within the dredged clay is a soil improvement method to accelerate the consolidation by expelling pore water in the vertical direction along the horizontal drains. Based on the finite strain consolidation theory by Gibson et al., the partial differential equation of 2-D consolidation due to the horizontal drain is derived. The consolidation due to the horizontal drain can be illustrated from combined self-weight consolidation effect and consolidation effect by horizontal drains. For the prediction of consolidation settlement and degree of consolidation numerical analysis is suggested on the basis of Dufort-Frankel finite differential algorithm. Also, the analytical procedures proposed in this study are verified by the model tests, and the predictions of the consolidation settlement and degree of consolidation are compared with the results obtained from the tests for the dredged clay gathering at Siwha site in Ansan, Korea. For the predictions, the relationship void ratio vs effective stress and the relationship permeability vs void ratio of the dredged clay are obtained from the odometer tests. Additionally, the parametric study for consolidation settlement by variations of design parameters related with horizontal drain method is carried out. Based on the results of the parametric study, design .charts for the preliminary design are also proposed.

  • PDF

A Study on the Negative Skin Friction based on Measurements from Existing Works Analysed by 3D Finite Element Analyses (기발표 실측치 분석을 기반으로 한 3차원 유한요소해석 수행을 통한 부마찰에 관한 연구)

  • Jeon, Sang Joon;Jeon, Young Jin;Jeon, Seung Chan;Lee, Cheol Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.8
    • /
    • pp.15-27
    • /
    • 2020
  • In the current paper, a series of advanced 3D finite element analyses have been performed on existing pieces of work of negative skin friction from a geotechnical centrifuge test and full-scale field measurements. From these analyses, key features of pile behaviour under the influence of negative skin friction which, previously, were not fully understood in existing studies, have been meticulously discussed. As such, it has been possible to successfully address several numerical modelling issues such as negative skin friction induced pile settlements and group effects (the shielding effect), the effect of sacrificial piles in groups and the interaction between the pile head and the cap, the effect of interface elements at the pile-soil interface and the time-dependent pile behaviour. During a geotechnical centrifuge test, substantial amounts of negative skin frictions were mobilised when centrifugal acceleration increased from 1g to a certain g-level due to an increase in the self-weight of soil. The behaviour of piles inside a group were heavily affected by the sacrificial piles and the connectivity between the pile head and the pile cap. In particular, as negative skin friction has time dependent qualities associated with consolidation, it was logical to perform coupled analyses when analysing piles in consolidating grounds. From the current work, several insufficiencies of previous researches have been addressed, and the engineering pile behaviour subjected to negative skin friction has been clarified.

Study on Determining Consolidation Parameters of Soft Clay Ground Improved by Sand Pile (모래말뚝이 타설된 연약점토지반의 압밀정수결정에 관한 연구)

  • You, Seung-Kyong;Matsui, Tamotsu;Hong, Won-Pyo;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.264-271
    • /
    • 2005
  • Sand pile method, such as sand drain method and sand compaction pile method, has been popularly used as an improvement method for soft clay grounds. The effect of accelerating consolidation of soft clay grounds has been evaluated with Barron's solution. By the way, the consolidation behavior of soft clay ground with sand piles strongly depends on both the nonlinear mechanical interaction between sand piles and surrounding clays and the degradation permeability of clays. In this paper, the method for determining consolidation parameters of soft clay ground with sand drains by using Barron's solution was proposed, through a series of numerical simulations. Through the method, the change in both volume compressibility and permeability during consolidation was reasonably evaluated.

  • PDF

The Study on the Development and the Applicability of Consolidation Analysis Program Considering the Creep Strain (Creep 변형을 고려한 압밀해석 프로그램의 개발과 적용성 분석)

  • Kim, Su-Sam;Jeong, Seung-Yong;An, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.129-142
    • /
    • 1998
  • This research is focused on the inducement of the constitutive equation considering the creep strain component and on the development of a finite element method program. The purpose of this research was to contribute to the design of construction structures or to the construction management in soft clay ground through predicting the long-term strain of construction structures reasonably bused on the above program. Modified Cam Clay model was adopted to describe the elastic-plastic behavior of clayey soil. And in the calculation of the creep sprain, the secondary coefficient of consolidation C. was applied for considering the volumetric creep element and the constants m, $\alpha$, A were rosed by the empirical creep equation proposed by Singh 8E Mitchell for considering the deviatoric creep element. To examine the reliability of the program which is developed in this study, the estimated values by this program were compared with the theoretical solution and the experimental results. And the applicability of the developed program was found to be reliable from the sensitive analysis of each parameters used in this study. According to the results obtained from the application of the program on the field measurement data, the estimated values by the program were found with be consistent with the actual values. And from the analysis of the displacement of embankments, the case of considering the creep behavior induced much fower errors than the case of neglecting it. But the results obtained from considering the volumetric creep behavior only were slightly underestimated the results from considering the deviator creep behavior showed the slightly overestimated values. Therefore, it remains the task of further studios to develop the laboratory test devices to obtain the reliable creep parameters, and to select the appropriate soil parameters, etc.

  • PDF

Estimation of Equivalent Diameter for Cross Shaped Vertical Drain Installed in Weak Clay Soils (연약점성토 지반에 타설된 십자형배수재의 등가직경 산정)

  • 장연수;김영우;김수삼
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • In this paper, the consolidation efficiency and the equivalent diameter of the cross shaped drain are examined by using the laboratory test and the numerical model, and the results are compared with those of the band shaped drain. The equivalent diameter of the tested drains is back-calculated from the laboratory experiment and compared with those calculated from the formula suggested in the literature. The efficiency of the cross shaped drain is evaluated by using the 3-D flow program which was validated by the settlement-time test fill data. The results of laboratory test show that the equivalent diameter of the band shaped drain was close to the Rixner's formula and that of the cross shaped drain was fit to the following formula: $d_w\;=\; \\tarc{3}{4}.(b+t)$The results of the numerical analysis show that the cross shaped drain can reduce the consolidation time by 9-10% from that for the band shaped drain. The equivalent diameter obtained from the numerical flow model by using the field data is 3.5 times smaller than that obtained from the laboratory consolidation test.

  • PDF

Estimation of Degree of Consolidation in Soft Ground Using Field Measurements and Rheology Model (현장 계측치와 유변학적 모형을 이용한 연약지반의 압밀도 추정)

  • Lee, Dal-Won;Yoon, Hyun-Jung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.87-96
    • /
    • 2005
  • In this research, an attempt is made to derive the practical estimation of the degree of consolidation in soft clay from field measurements under embankments. For the practical estimation of pore water pressure in soft clay, the elasto-viscous rheological model was proposed, with a transform of parameters and a field geotechnical measurements in southern Korea. By using the rheological properties of soft clays and the dissipation of excess pore water pressure behaviour during step loading, a degree of consolidation or pore water pressure estimation in the future can be performed, and are shown to be generally close to the field measurements of pore water pressure. Finally, a pore water pressure behaviour in soft clay can be explained through measured data in field and the excess pore water pressure data can also be used to estimate settlement.

A Study on the Practical Estimation Technique of a Long-term Settlement by the Observation Results in the Field (현장계획에 의한 연약지반의 장기 침하 예측지법에 관한 실증적 연구)

  • 서수봉;김수삼
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.35-44
    • /
    • 1991
  • This study was carried out for the purpose of pre-estimating long-term settlement under condition of actual field soil's property, in case of building up industrial sites on the marine deposit silty clay located at West Coast in Korea. This study analyzed Hyperbolic Method, Square Root Time Method and Exponential Function Method with utilization of measured survey values of settlement in In-Cheon Namdong Industrial Sites. In the future, for the continuos utilization, it seemed to be needed that further the survey values of fields should be accurartely measured for the analysis of more accurate pre-estimate about long-term settlement. Among the prediction methods of settlement Hyperbolic Method seemed to be the best fitting method for measured data. The settlement equations were derived from above three methods, for long-term settlements.

  • PDF

Application of Prefabricated Horizontal Drains to Marine Clayey Soils (해안상의 토목섬유 수평배수재의 적용)

    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.329-336
    • /
    • 1998
  • Sandmats are used to dissipate trapped water rapidly from the embankment built on marine soft ground. At present, however, it becomes difficult to obtain qualified sands since natural resources such as river sand are to exhausted. Also, low permeability of sand may cause low degree of consolidation and instability of embankment. In this study, design and construction methods was discussed. Drainage capacities of prefabricated horizontal drains which were installed in highway construction site are investigated in order to find possible substitution for river sands as drainage materials. On the basis of measurement data at the construction site, it was concluded that use of the prefabricated horizontal drains shows satisfactory drainage capacity without instability of embankment.

  • PDF