• Title/Summary/Keyword: 연약지반개량공법

Search Result 201, Processing Time 0.027 seconds

Determination of Optimum Stepped Vacuum Pressure and Settlement for IVPM-applied Ground (개별진공압공법이 적용된 지반의 최적 단계진공압 산정 및 침하예측)

  • Yoon, Myung-Seok;Ahn, Dong-Wook;Park, Jea-Man;Kim, Soo-Sam
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • Individual Vacuum Pressure Method (IVPM) is a soft ground improvement technique, in which a vacuum pressure can be directly applied to the vertical drain board to promote consolidation and to strengthen the soft ground. This method does not require surcharge loads, different to embankment or pre-loading method. In this study, the ground improvement efficiency of Individual Vacuum Pressure Method was estimated when suction pressure increases step by step(-20, -40, -60, -80kPa) with different periods. During Individual Vacuum Pressure Method process, surface settlement and pore pressure were monitored, and cone resistance as well as water content were also measured after the completion of Individual Vacuum Pressure Method treatment. From the results, optimum duration of each step of vacuum pressure was determined, and the settlement was calculated using FEM numerical analysis.

Comparison on the Performance of Soil Improvement in Thick Soft Ground Using Single-Core and Double-Core PBD (단일 및 이중 코어 PBD에 의한 대심도 연약지반 개량 효과에 관한 비교연구)

  • Yang, Jeong-Hun;Hong, Sung-Jin;Kim, Hyung-Sub;Lee, Woo-Jin;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.33-45
    • /
    • 2009
  • The conventional single-core PBDs have been widely used in order to accelerate consolidation settlement of soft grounds. When using the single-core PBD in a thick clay deposit, a delay of consolidation may occur due to high confining pressure in the thick deposit and necking of drains. This study is to compare the performances of soil improvement by the single-core and double-core PBD installed at a site in Busan New Port which exhibits approximately a 40m-thick clay layer. An in-situ test program was performed at the test site where a set of the double-core PBDs and single-core PBDs were installed to compare the efficiency of each drain. In addition, the discharge capacity of each PBD has been measured using the modified Delft Test. A series of laboratory tests for estimating in-situ soil properties have also been performed in order to obtain input parameters for a numerical program ILLICON. The discharge capacity of the double-core PBD is higher than that of the single-core PBD in the modified Delft Test. However it is observed from the comparative in-situ test and numerical analysis that there is no difference in the performance of ground improvement between the two drain systems. This discrepancy comes from the fact that the amount of water released during consolidation in most common field conditions is much smaller than the capacity of even the single core PBD. And thus, considering actual field conditions, it can be concluded that the single-core PBD has enough discharge capacity even in the thick clay deposit such as this test site.

2-D Axisymmetric Non-linear Finite Strain Consolidation Model Considering Self-weight Consolidation of Dredged Soil (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 모델)

  • Kwak, Tae-Hoon;Lee, Dong-Seop;Lim, Jee-Hee;Stark, T.D.;Choi, Eun-Seok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.5-19
    • /
    • 2012
  • Vertical drains along with the preloading technique have been commonly used to enhance the consolidation rate of dredged placement formation. In practice, vertical drains are usually installed in the process of self-weight consolidation of a dredged soil deposit because this process takes considerable time to be completed, which makes conventional analytical or numerical models difficult to quantify the consolidation behavior. In this paper, we propose a governing partial differential equation and develop a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the behavior of a vertical drain in the dredged placement foundation which is installed during the self-weight consolidation. In order to verify the developed model in this paper, results of the numerical analysis are compared with that of the lab-scaled self-weight consolidation test. In addition, the model verification has been carried out by comparing with the simplified method. The comparisons show that the developed model can properly simulate the consolidation of the dredged placement formation with the vertical drains installed during the self-weight consolidation. Finally, the effect of construction schedule of vertical drains and of pre-loading during the self-weight consolidation is examined by simulating an imaginary dredged material placement site with a thickness of 10 m and 20 m, respectively. This simulation infers the applicability of the proposed method in this research for designing a soil improvement in a soft dredged deposit when vertical drains and pre-loading are implemented before the self-weight consolidation ceases.

Numerical Evaluation of Geosynthetic Reinforced Column Supported Embankments (개량체 기둥지지 성토공법의 지오그리드 보강효과에 대한 수치해석)

  • Jung, Duhwoe;Jeong, Sidong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.13-22
    • /
    • 2021
  • Pile or column supported embankments have been increasingly employed to construct highway or railway embankments over soft soils. Piles or columns of stiffer material installed in the soft ground can provide the necessary support by transferring the embankment load to a firm stratum using a soil arching. However, there has been reported to occur a relatively large differential settlement between the piles and the untreated soils. Geosynthetic reinforced pile or column supported embankment (GRPS) is often used to minimize the differential settlement. Two dimensional finite element anlyses have been performed on both the column supported embankments and the geogrid reinforced column supported embankments by using a PLAXIS 2D to evaluate the soil arching effect. Based on the results obtained from finite element analyses, the stress reduction ratio decreases as the area replacement ratio increases in the column supported embankments. For the geogrid reinforced column supported embankments, the geogrid reinforcemnt can reduce differential settlements effectively. In additon, the use of stiffer geogrid is appeared to be more effective in reducing the differential settlements.

A Case Study on the Test Execution for DCM using Vietnam CFBC Fly Ash Solidification Material (베트남 순환유동층 발전(CFBC) 플라이애시 고화재를 사용한 심층혼합 처리공법(DCM) 시험시공 사례)

  • Kim, Keeseok;Lee, Dongwon;Lee, Jaewon;Kwon, Yongkyu;Yu, Jihyung;Hoang, Truong Xuan;Jung, Chanmuk;Min, Kyongnam
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.38-48
    • /
    • 2018
  • Deep cement mixing method (DCM) is used to improve the quality of various ground type and its technical development proceeding based on performance improvements of solidification materials and mixing techniques with ground soil. In this study, it was possible to improve silty clay ground soil had 1 to 3 MPa compressive strength using solidification material that composed mainly circulating fluidized bed combustion (CFBC) power plant fly ash and reduce standard deviation of strengths from over 1.0 MPa to 0.322 MPa using improved auger bits in field test to forming more uniform bulbs than in case of using existing auger bit.

Shear Strength Characteristics of Dredged Soil with Oyster Shell Binder (굴패각 고화재를 혼합한 준설토의 전단특성)

  • Lee, Sangjin;Yoon, Gillim;Lee, Yoongyu;Lee, Kidong;Kang, Ingyu;Kim, Hongtaek;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • Trafficability for construction equipments in soft ground should be secured by improving the surface course. For this situation, the ground improvement technique has been used with stiffening agent, but the improvement cement has been mostly used so far. However, oyster shell has been developed and used as the stiffening agent to expand the chance of recycling oyster shell, which is regarded as solid waste. In this research, it was confirmed mechanical characteristics of oyster shell as stiffening agent by analyzing the strength characteristic such as mixing rates, water contents, and curing days of that to the dredging soil.

  • PDF

An Analysis of Behavior and Strength of Cement using Improved Materials by Laboratory Model Test (실내 모형실험에 의한 지반보강 개량체 특성 분석)

  • Oh, Philjin;Park, Minchul;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.19-29
    • /
    • 2012
  • For foundation of Port structure, it is essential geotechnical understanding about feature of ground and the geologic formation which is different to terrestrial ground. What is most important is the understanding of soft ground clay, which is much softer than terrestrial ground. To build foundation of a port structure which is mainly gravity based on the special geographical circumstance that is on the sea, the improvement method of foundation should be applied according to soft clay ground features. Therefore, in this study, the behaviors of improved materials with strength were analyzed on the soft clay foundation where suppose to be located the foundation of port structure. The laboratory model test has been conducted in 2 cases with unconfined compression strength of improved materials, 25kPa and 125kPa. Cement, water, and in-situ soft clay were combined at a fixed rate and made a shape of 5cm diameter ${\times}$ 70cm height column. Improved materials were located with replacement ratio(11%, 35% and 61%) in 38cm diameter ${\times}$ 80cm height cylinder. Finally, the stress distribution ratio on the improved materials and clay, settlement was analyzed by applying a load of 10kPa, 30kPa, and 50kPa.

Application of Soil-Cement Piles to the Ground Improvement of Harbor Structures (소일-시멘트 파일을 이용한 항만구조물의 말뚝식 지반개량 적용성)

  • Lee, Seong-Hun;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.29-47
    • /
    • 2013
  • This study undertook research on the sections of 90 harbor structures which applied a pile-type soil improvement using the soil-cement pile and then, determined the minimum replacement rate for each section, showing sufficient stability in all relevant studies including numerical analysis. The reliability of the numerical analysis was verified by a centrifuge model test. As a result of the study, it was revealed that when the foundation soil is too soft ($s_u$ = under 15 kPa), it is unsuitable to apply a pile-type ground improvement to a soil improvement regardless of types of super structures. And a pile-type soil improvement was found to be suitable for a harbor structure with the relative stiffness ratio (n) of less than 50~75 at a maximum and the 2~3 MPa strength of the soil-cement pile. Furthermore the governing factor for the minimum replacement rate for the pile-type soil improvement was turned out to be the allowable horizontal displacement. Therefore, the primary review to see the applicability of the pile-type soil improvement requires the evaluation of horizontal displacements.

Evaluation of Lateral Flow in Soft Ground under Embankment (성토하부 연약지반의 측방유동 평가)

  • Hong, Won-Pyo;Cho, Sam-Deok;Lee, Jae-Ho;Lee, Kwang-Wu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.93-100
    • /
    • 2006
  • The lateral soil movement in soft grounds undergoing improvement with application of vertical drains is analyzed on the basis of monitoring data at three fields, in which fifty six monitoring sites are located. Based on the investigations, the criterions are suggested to predict the lateral soil movement. In order to predict the lateral soil movement in the improved soft grounds by using the dimensionless parameter R suggested by Marche & Chapuis (1974), it is desirable that the maximum lateral displacement in the soft ground below the toe of embankment should be applied to calculate R instead of the lateral displacement at the toe of embankment. The lateral soil movement may increase rapidly, if the safety factor of slope is less than 1.4 in case of high ratio of H/B (Thickness of soft ground/Embankment width) such as 1.15 or is less than 1.2 in case of low ratio of H/B such as 0.05. Also, the graph suggested by Tschebotarioff (1973), which illustrates the relationship between the maximum height of embankments and the undrained shear strength of soft grounds, can be applied to the evaluation for the possibility of the lateral soil movement due to embankments on soft grounds.

Estimation of Application on the Site of SRC Method for the Ground Reinforcement in Marine Clay (해성점토층에서 SRC 지반보강에 관한 현장적용성 평가)

  • Lee, Seungjun;Lee, Seogyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2013
  • Currently, the west coast has focused on large-scale investment and development, such as harbor construction work and land reclamation projects, with soft ground grouting issues being the major concern. In addition, grouting for soft ground reinforcement is definitely considered that construction purpose, soil condition, construction situation, and construction costs. The SRC method, which is a high pressure injection method, can easily produce well-distributed strength regardless of soil characteristics and is environmentally friendly. Therefore in this study, the SRC method was applied to marine clay on the west coast where located Jeongok-ri, Seosin-myeon, Hwaseong-si, Gyeonggi-do, Korea as well as estimated of the ground reinforcement and the application on the site. The results of the application on the site by SRC method indicated age 28 day strength is $14,700{\sim}31,800kN/m^2$ which is satisfied the criterion of unconfined compressive strength that more than $5,333kN/m^2$. Therefore the result that the SRC method constructed marine clay on the west coast indicated the outstanding strength as well as excellent durability.