• Title/Summary/Keyword: 연신

Search Result 615, Processing Time 0.027 seconds

Characterization of LLDPE/CaCO3 Composite Drawn Film (연신된 LLDPE/CaCO3 composite film의 특성분석)

  • Lee, Jungeon;Park, Jae Min;Jung, Jae Hoon;Kim, Tae Young;Han, Myung Dong;Seo, Jang Min;Seo, Min Jeong;Yang, Seong Baek;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.68-75
    • /
    • 2022
  • The breathable film refers to a high-functional film that allows gas and water vapor to pass through very fine and sophisticated pores but not liquid. In this research, the breathable film was prepared based on linear low-density polyethylene (LLDPE) and CaCO3 particles by extrude method. The LLDPE composite film containing CaCO3 particles had excellent mechanical properties and functionalties. The drawing is a technologically simple and excellent method for improving the mechanical properties of composite films. In this work, the effects of draw ratio on morphology, crystallinity, pore size distribution, mechanical properties, and water vapor permeability of the films were examined. The results revealed that both surface morphology and breathability were affected by the influence of chain orientation and crystal growth with increasing the draw ratio. The mechanical properties were improved with increasing the draw ratio.

Analysis of the Physical Properties of the Conductive Paste according to the Type of Binder Resin and Simulation of Mechanical Properties according to Ag Flake Volume Fraction (바인더 수지 종류에 따른 도전성 페이스트의 물성 분석 및 Ag flake 부피 분율에 따른 기계적 특성 시뮬레이션 연구)

  • Sim, Ji-Hyun;Yun, Hyeon-Seong;Yu, Seong-Hun;Park, Jong-Su;Jeon, Seong-Min;Bae, Jin-Seok
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.69-74
    • /
    • 2022
  • In this study, the conductive paste used in a wide range such as wiring in the electronic packaging field, the automobile industry, and electronic products is manufactured under various process conditions due to the simplicity of the process, and then the thermal, mechanical, and electrical characteristics are analyzed and simulation studies are conducted to optimize the process. to establish the conditions of the conductive paste manufacturing process. First, a conductive paste was prepared by setting various types of binder resin, an essential component of the conductive paste, and characteristics such as thermal conductivity, tensile strength, and elongation were analyzed. Among the binder resins, the conductive paste applied with a flexible epoxy material had the best physical properties, and a simulation study was conducted based on the physical property data base of the conductive face. As a result of the simulation, the best physical properties were exhibited when the Ag flake volume fraction was 60%.

Tutorial Review on Membrane Classification and Preparation Methods (멤브레인 분류 및 제조 방법에 대한 튜토리얼 총설)

  • Moon, Seung Jae;Kim, Young Jun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.198-208
    • /
    • 2022
  • Membrane can selectively separate various substances such as organic substances, liquids, solutes, vapors, gases, ions or electrons according to the separation technology and various uses. Membranes are largely divided into symmetric membranes and asymmetric membranes, and classified into porous and nonporous structure depending on the presence or absence of pores. Also, the interface of the membrane may be molecularly uniform, or chemically or physically non-uniform. Preparation techniques include melt extrusion, stretching, template leaching, track-etching, solution casting, phase inversion, and solution coating method. The prepared membrane can be applied to various applications such as microfiltration, ultrafiltration, nanofiltration, reverse osmosis, gas separation and energy fields. This review provides a tutorial on how to prepare membranes according to the classification and types.

Fabrication of Electroconductive Textiles Based Polyamide/Polyurethan Knitted Fabric Coated with PEDOT:PSS/Non-oxidized Graphene (PEDOT:PSS/그래핀 코팅된 폴리아미드/폴리우레탄 혼방 편직물 기반의 전기전도성 텍스타일 제조)

  • Luo, Yuzi;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.146-155
    • /
    • 2022
  • We proposed a simple process of creating electroconductive textiles by using PEDOT:PSS(Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate))/non-oxidized graphene to coat polyamide or polyurethane knitted fabric for smart healthcare purposes. Electroconductive textiles were obtained through a coating process that used different amounts of PEDOT:PSS/non-oxidized graphene solutions on polyamide/polyurethane knitted fabric. Subsequently, the surface, electrical, chemical, weight change, and elongation properties were evaluated according to the ratio of PEDOT:PSS/non-oxidized graphene composite(1.3 wt%:1.0 wt%; 1.3 wt%:0.6 wt%; 1.3 wt%:0.3 wt%) and the number of applications(once, twice, or thrice). The specimens' surface morphology was observed by FE-SEM. Further, their chemical structures were characterized using FTIR and Raman spectroscopy. The electrical properties measurement (sheet resistance) of the specimens, which was conducted by four-point contacts, shows the increase in conductivity with non-oxidized graphene and the number of applications in the composite system. Moreover, a test of the fabrics' mechanical properties shows that PEDOT:PSS/non-oxidized graphene-treated fabrics exhibited less elongation and better ability to recover their original length than untreated samples. Furthermore, the PEDOT:PSS/non-oxidized graphene polyamide/polyurethane knitted fabric was tested by performing tensile operations 1,000 times with a tensile strength of 20%; Consequently, sensors maintained a constant resistance without noticeable damage. This indicates that PEDOT:PSS/non-oxidized graphene strain sensors have sufficient durability and conductivity to be used as smart wearable devices.

Effect of Heat Treatment on Mechanical Properties of Cross-Linked Ultra-High Molecular Weight Polyethylene Used for Artificial Joint Liner (인공관절 라이너용 가교된 초고분자량폴리에틸렌(UHMWPE)의 열처리 조건에 따른 기계적 특성 변화)

  • Kim, Hyun-Mook;Kim, Dong-Hoon;Gu, Ja-Uk;Choi, Nak-Sam;Kim, Sung-Kon
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • The mechanical characteristics of gamma-ray irradiated UHMWPE specimens were investigated under various heat treatment conditions. The heat treatment was performed in the range of annealing and remelting temperatures. The annealing treatment below the temperature of $130^{\circ}C$ hardly induced changes in the tensile strength, the strain at the failure and the hardness. However the remelting treatment above $140^{\circ}C$ deteriorated those mechanical properties. It was shown in an FTIR analysis that the annealing treatment caused some oxidation of free radicals created by the pretreatment of the irradiation. These quantitative data represented by the behavior of mechanical properties might be used as basic informations for the design and analysis of various artificial joints.

Comparative study on absorbable periodontal tissue regeneration barrier membranes (흡수성 치주조직 재생 차폐막에 대한 비교연구)

  • Youngchae Cho;Dayeon Jeong;Deuk Yong Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.71-77
    • /
    • 2023
  • Absorbable periodontal tissue regeneration barrier membranes (total 6; domestic 4; import 2) were comparatively analyzed. In the case of the xenograft barrier membrane, the collagen product had excellent tensile strength but low strain, and the porcine pericardial membrane had good mechanical properties, but its thickness was too thick to control. The synthetic PLLA membrane manufactured by the electrospinning had a relatively low water absorption capacity. However, the hybrid barrier membrane was able to control mechanical properties and biocompatibility through proper mixing of synthetic polymer and natural polymer. DA02 (PLLA/gelatin), a newly developed hybrid absorbable periodontal tissue regeneration membrane that is entirely dependent on imports, can be applied to an absorbable periodontal tissue regeneration barrier membrane due to suitable mechanical properties and biocompatibility.

Studies of the Membrane Formation Techniques and Its Correlation with Properties and Performance: A Review (막 형성 기술 및 특성과의 상관관계 연구 및 성능: 리뷰)

  • Kumari Nikita;Chivukula Narayana Murthy;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.110-126
    • /
    • 2023
  • In this review, the approaches, properties, and elements involved in the formation of polymeric membranes for various materials are discussed. The present research emphasizes the proficiency in several membrane formation processes such phase inversion, interfacial polymerization, stretching, track etching, and electrospinning. Additionally, the obstacles and applicability of various application manufacturing processes are addressed. Various polymeric membranes are reviewed with regard to significant surface properties such as surface roughness, surface tension, surface charge and surface functional group. Additional enhancements of popular membrane formation processes like phase inversion and interfacial polymerization are required to ensure advancements in membrane efficiency. Analysing the possibilities of modern manufacturing practices like track etching and electrospinning is also crucial.

A Study on the Response Technique for Toxic Chemicals Release Accidents - Hydrogen Fluoride and Ammonia - (독성 화학물질 누출사고 대응 기술연구 - 불산 및 암모니아 누출을 중심으로 -)

  • Yoon, Young Sam;Cho, Mun Sik;Kim, Ki Joon;Park, Yeon Shin;Hwang, Dong Gun;Yoon, Jun heon;Choi, Kyung Hee
    • Korean Journal of Hazardous Materials
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 2014
  • Since the unprecedented hydrogen fluoride leak accident in 2012, there has been growing demand for customized technical information for rapid response and chemical accident management agencies including the Ministry of Environment, the National Emergency Management Agency, and the National Police Agency need more information on chemicals and accident management. In this regard, this study aims to provide reliable technical data and guidelines to initial response agencies, similar to accident management technical reports of the US and Canada. In this study, we conducted a questionnaire survey and interviews on initial response agencies like fire stations, police stations, and local governments to identify new information items for appropriate initial response and improvements of current guidelines. We also collected and reviewed the Canada's TIPS, US EPA's hydrogen fluoride documents, domestic and foreign literature on applicability tests of control chemicals, and interview data, and then produced items to be listed in the technical guidelines. In addition, to establish database of on-site technical information, we carried out applicability tests for accident control data including ① emergency shut down devide, safety guard, shut down valve, ground connection, dyke, transfer pipe, scrubber, and sensor; ② literature and field survey on distribution type and transportation/storage characteristics (container identification, valve, ground connection, etc.); ③ classification and identification of storage/transportation facilities and emergency management methodslike leak prevention, chemicals control, and cutoff or bypass of rain drainage; ④ domestic/foreign analysis methods and environmental standards including portable detection methods, test standards, and exposure limits; and ⑤ comparison/evaluation of neutralization efficiency of control chemicals on toxic substances.

Drawing Behavior and Characterization of Recycled Polyester Yarn (재활용 폴리에스터 원사의 연신거동 및 특성분석)

  • Jungeon Lee;Tae Young Kim;Jae Min Park;Eun A Bae;Young Hun Kim;Jae Hoon, Jung;Youngkwon Kim;Jeong Hyun Yeum
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.169-178
    • /
    • 2023
  • The extended use of polyester nowadays has increased the amount of waste polyester (PET) released into the environment. Although these materials don't directly harm living things or the ecosystem, their inability to biodegrade remains one of the major global threats, driving up the amount of solid waste made up of PET. Environmental concerns have approved an increasing interest in recycled PET however the production of recycled PET with sufficient mechanical properties is still a challenge. Recycled Polyester (rPET) yarns are inexpensive and have the potential to acquire better mechanical characteristics through physical treatments, particularly by using technically simple method like uniaxial drawing. This study inspected the drawn behavior of virgin PET yarns and rPET yarns under various drawing parameters by first analyzing the initial material characteristics of both yarn. The impact of stretching on mechanical and morphological properties was also investigated. The results showed that virgin PET has better properties than rPET yarn; however, mechanical properties resembling virgin PET are achieved after optimizing the draw ratio.

Blend Characteristics of PBT, Nylon6,12 and Preparation of PBT/Nylon6,12 Micro Fiber with Core/shell Structure and their Extrusion Conditions (PBT와 Nylon6,12의 블렌드 특성과 core/shell 구조를 갖는 PBT/Nylon6,12 미세모의 제조 및 압출조건)

  • Park, Hui-Man;Lee, Seon-Ho;Kwak, Noh-Seok;Hwang, Chi Won;Park, Sung-Gyu;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1068-1075
    • /
    • 2012
  • Poly(butylene terephthalate) (PBT)/Nylon6,12 core/shell micro fiber were prepared by extrusion molding. To investigate their optimum extrusion conditions, compatibility of PBT/Nylon6,12 blend micro fiber in conformity to their weight ratio and manufacture temperature was explored with SEM morphology and DSC. The alterations in their mechanical properties by extrusion speed were compared and analyzed through a UTM. In comparison with SEM figures, the domain sizes of Nylon6,12 were gradually declined by increasing the extrusion temperature of blends. Furthermore, according to these SEM images, the phase separation between Nylon6,12 domain and PBT matrix became indistinct with increasing of weight percentage of Nylon6,12. In case of DSC, the boundaries of two peaks were almost disappeared when increasing the extrusion temperature and also intervals of each two melting peaks became narrow as increasing the Nylon6,12 ratio. The mechanical properties including tensile strength, elongation, flexural strength and flexural modulus were increased as the increase in the extrusion temperature until $260^{\circ}C$. However, the mechanical properties were actually deteriorated over $260^{\circ}C$. The tensile strength, elongation, flexural strength and flexural modulus at $260^{\circ}C$ were 560 $kg_f/cm^2$, 220%, 807 $kg_f/cm^2$ and 22,146 $kg_f/cm^2$, respectively. These values are more than intermediate values of mechanical properties of PBT and Nylon6,12. These results mean that there is compatibility between PBT and Nylon6,12. Based on the extrusion conditions that produced optimum compatibility of blend, as a result, our group obtained micro fibers with the core/shell structure.