• 제목/요약/키워드: 연신

검색결과 615건 처리시간 0.027초

A study on the 3D simulation system improvement through comparing visual images between the real garment and the 3D garment simulation of women's Jacket (여성 재킷의 실제착의와 가상착의 비교를 통한 3D 가상착의 시스템 개선에 대한 연구)

  • Kwak, Younsin
    • The Journal of the Convergence on Culture Technology
    • /
    • 제2권3호
    • /
    • pp.15-22
    • /
    • 2016
  • The purpose of this study is to propose improvements for 3D garment simulation system by comparison with the difference between real garment and 3D garment simulation of women's jacket. The process of the study was to take pictures on the standard sized subject wearing the jacket of basic size, to get a avatar from body sizes of the subject, and to obtain images of 3D garment simulation on the avatar. The appearance evaluation was resulted by the method of a questionnaire survey after presenting the images to 24 members of patterner and 22 members of designer. On that appearance evaluation by designer group, perform comparative analysis of differences between the real garment and the 3D garment simulation of women's jacket. On that appearance evaluation by patterner group, perform comparative analysis of differences between the real garment and the 3D garment simulation of women's jacket. There were the differences on 4 areas: 1 questions of the side, 1 questions on the back, 7 questions on the sleeve, and 1 questions on the collar, and the results showed that the 3D garment simulation was preferable on each question.

A Study on the Material Properties and Welding Performance of Built-up H-beam (Built-up H형강의 소재특성 및 용접성능에 관한 연구)

  • Choi, Young Han;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • 제30권1호
    • /
    • pp.13-23
    • /
    • 2018
  • The use of a built-up H-beam (BH) that can easily manufacture a section is increasing. This is a basic study on standardization of BH. It confirmed the material properties of SM490 and SM520 steel such as yield strength, tensile strength, elongation, charpy absorbed energy, and else. The six BH specimens were manufactured with single-SAW or tandem-SAW. The welding performance was confirmed by collecting the macroscopic specimen and T-bar tensile specimen form the BH. As a result of the material property test, the properties of SM490 and SM520 which are made in Korea both satisfied the KS. As a result of the welding performance experiment, it is determined that the weld zone of BH has sufficient welding performance. Therefore, they are determined that the SM490 and SM520 steel are a proper material of BH, and the single-SAW and the tandem-SAW show a sufficient welding performance.

A study on simulation of women's Jacket using 3D CAD system (3D CAD system을 활용한 여성재킷 시뮬레이션에 관한 연구)

  • Kwak, Younsin
    • The Journal of the Convergence on Culture Technology
    • /
    • 제4권3호
    • /
    • pp.191-196
    • /
    • 2018
  • The purpose of this study is to propose improvements for 3D garment simulation system by comparison with the difference between real garment and 3D garment simulation A, B of women's jacket. The process of the study was to take pictures on the standard sized subject wearing the jacket of basic size, to get a avatar from body sizes of the subject, and to obtain images of 3D garment simulation on the avatar. The appearance evaluation was resulted by the method of a questionnaire survey after presenting the images to 20 members of women's jacket customer. On that appearance evaluation, performed comparative analysis of same degree between the real garment and the Virtual garment A in women's jacket. And performed comparative analysis of same degree between the real garment and the Virtual garment B in women's jacket. It was done t-test for difference in appearance evaluation between real garment/virtual garment A and Real garment/virtual garment B. There were the differences on 4 areas: 1 question on the fabric, 9 questions on the front, 3 questions on the side, and 6 questions on the back.

A Serial Multiplier for Type k Gaussian Normal Basis (타입 k 가우시안 정규기저를 갖는 유한체의 직렬곱셈 연산기)

  • Kim, Chang-Han;Chang, Nam-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • 제43권2호
    • /
    • pp.84-95
    • /
    • 2006
  • In H/W implementation for the finite field the use of normal basis has several advantages, especially, the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. In this paper, we propose a new, simpler, parallel multiplier over $GF(2^m)$ having a Gaussian normal basis of type k, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{mk})$ containing a type-I optimal normal basis. For k=2,4,6 the time and area complexity of the proposed multiplier is the same as tha of the best known Reyhani-Masoleh and Hasan multiplier.

Quantitative Evaluation of Plasticity and Extension for Extruding Body (압출성형용 소지의 가소성과 연신율의 정량화)

  • Bae, Won-Tae;Shin, Dong-Woo
    • Journal of the Korean Ceramic Society
    • /
    • 제39권11호
    • /
    • pp.1048-1054
    • /
    • 2002
  • When forming the ceramic body with plastic mass, it is needed that a quantitative testing method for plasticity, not only to evaluate the plasticity of a body, but also to control it within limits. Although many testing instruments were introduced, but no handy testing instrument for the plasticity quantitatively has been developed. In this study, modified vicat needle was designed to handily evaluate the plasicity of extruding bodies for honeycomb. The plasticity of three plastic masses was tested with this equipment. Columned needle with 2 mm diameter was adopted to measure the resistance for deformation and spherical needle with 9.5 mm diameter was adopted to measure the amount of deformation before cracking. The plasticity of three tested bodies were clearly distinguished quantitatively each other and the testing results were helpful to evaluated the workability of theses bodies. Probably, it is possible to evaluate the plasticity of various ceramic bodies with this apparatus, if suitable diameters of columns and spheres are selected.

The Effects of Microstructure in Austenitic 316L Stainless Steels on the Strength and Damping Capacity (오스테나이트계 316L 스테인리스강의 강도 및 감쇠능에 미치는 미세조직의 영향)

  • SON DONG-WOOK;LEE JONG-MOON;KIM HYO-JONG;NAM KI-WOO;PARK KYU-SEOP;KANG CHANG-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2006
  • The effects of microstructure on the damping capacity and tensile properties of 316L stainless steel were investigated. Increasing the degree of cold working, the volume fraction of $\varepsilon-martensite$ decreased after rising to maximum value at specific level of cold working, the volume fraction of d-martensite slowly increased and then dramatically increased from the point of decreasing $\varepsilon-martensite$ volume fraction. Increasing the degree of cold working, the behnvior of damping capacity is similar to that of the $\varepsilon-martensite$. After the damping capacity showing the maximum value at about $20\%$ of cold rolling, damping capacity was decreased with the volume fraction of $\varepsilon-martensite$. Tensile strength was proportional to the volume fraction of d-martensite, and elongation steeply decreased in the range low volume fraction of a'-martensite, then slowly decreased in range the above $10\%$ volume fraction of d-martensite. The damping capacity and elongation is strongly controlled by the volume fraction of $\varepsilon$ martensite with liner relationship. However, the effect of the volume fraction of d-martensite and austenite phase on the damping capacity was not observed. Tensile strength was governed by the volume fraction of d-martensite.

Microfailure Degradation Mechanisms and Interfacial Properties of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Implant용 Bioabsorbable 복합재료의 미세파괴 분해메커니즘과 계면물성)

  • 박종만;김대식
    • Composites Research
    • /
    • 제14권4호
    • /
    • pp.15-26
    • /
    • 2001
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites fur implant materials were investigated using micromechanical technique and nondestructive acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas these of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. AE amplitude and AE energy of PEA fiber decreased gradually, and their distributions became narrower than those in the initial state with hydrolysis time. In case of bioactive glass fiber, AE amplitude and AE energy in tensile failure were much higher than in compression. In addition, AE parameters at the initial state were much higher than those after degradation under both tensile and compressive tests. In this work, interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process (저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Kim, Nam Hoon
    • Composites Research
    • /
    • 제33권5호
    • /
    • pp.282-287
    • /
    • 2020
  • In the present study, a high-strength polyethylene terephthalate (PET) sheet was fabricated through a densification process of low melting PET fiber (LMF) combined PET sheet. During the thermal heat treatment process of the combined LMF, individual PET fiber was connected, which in turn leads to the improvement of the interfacial bonding force between the fibers. Also, the densification of the PET sheet leads to reduce macrospore density and in return could enhance the binding force between the overlapped PET networks. Consequently, the asprepared LMF-PET sheet showed about 410% improved tensile strength and the same elongation compared to before compression. Besides, the enhanced bonding force can prevent the shrinkage of the PET fiber network and exhibited excellent dimensional stability.

The Effects of Temperature and Strain Rate on Flow Stress and Strain of AA5083 Alloy during High Temperature Deformation (AA5083 합금의 고온 변형시 유동응력 및 연신율에 미치는 온도와 변형 속도의 영향)

  • Ko, Byung-Chul;Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • 제7권2호
    • /
    • pp.168-176
    • /
    • 1998
  • Hot workability of the AA5083 alloy ws investigated by torsion test at temperature ranges of $350{\sim}520^{\circ}C$ and strain rates of 0.5, 1.0, and 3.0/sec. The flow stress and hot ductility of the AA5083 alloy as a function of deformation variables such as temperature and train rate were studied. The microstructural evolution of the AA5083 alloy was studied in relation to Zener-Hollomon parameter (Z=exp( /RT) Also the hot restoration mechanism of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ In addition the difference microstructures during hot deformation. It was found that the increase of flow curves and deformed microstructures during hot deformation. It was found that the increase of flow stress of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C.\;0.5/sec)$. However under the low Z values less than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ the flow stress increase with increasing the Z values. The large dispersoid particles in the matrix grain decreased the flow strain of the AA5083 alloy because it caused the stress concentration during hot deformation.

  • PDF

Synthesis and Physical Properties of Polycaprolactone Based Polyurethanes Using Aliphatic or Aromatic Diisocyanates (지방족 및 방향족 이소시아네이트를 이용한 폴리카프로락톤계 폴리우레탄의 합성 및 물성 연구)

  • Kim Sun-Mi;Kwak Noh-Seok;Yang Yun-Kyu;Yim Bong-Kyun;Park Bo-Young;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • 제29권3호
    • /
    • pp.253-259
    • /
    • 2005
  • Polyurethanes, synthesized by polyester polyols and aliphatic or aromatic diisocyanates for a crease resist finishing agent, were prepared by two-step reactions, that is, prepolymer synthesis and chain extension. The structures of synthesized polyurethanes were confirmed by the measurement of FT-IR and $^1H$-NMR spectrometer. The number average molecular weight ($\bar{M}_n$) and the weight average molecular weight ($\bar{M}_w$) of the polyurethane with aromatic diisocyanate (MDI) were higher than those of the synthesized polyurethanes with aliphatic diisocyanate (HDI, $H_{12}MDI$). The glass transition temperatures ($T_g$) of soft segments in polyurethanes with MDI, HDI, $H_{12}MDI$ were -25,-42 and -50$^{circ}C$, respectively. In the polyurethanes obtained by two-step reaction, thermal stability and tensile strength increased with increasing hard segment contents, whereas elongation at break decreased with increasing hard segment contents.