• Title/Summary/Keyword: 연신

Search Result 617, Processing Time 0.028 seconds

A Study on the Mechanical Properties Experiment for Architectural Application of Polyamide-12 MJF 3D Printing Material - Focusing on the Change in Tensile Properties According to the 3D Printing Orientation - (MJF 3D 프린팅 기반 폴리아미드-12 소재의 건축적 활용을 위한 기계적 특성 실험에 관한 연구 - 출력 방향에 따른 인장 특성 변화를 중심으로 -)

  • Park, Sangjae;Yoo, Seungkyu;Kim, Munhwan;Kim, Jaejun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.95-102
    • /
    • 2020
  • The number of use cases in machinery, aviation, and other industries that manufacture precise parts is increasing, and the construction industry is also increasingly using 3D printing technology. Although various materials for 3D printing are currently being developed and utilized, 3D printing manufacturing has a problem that the mechanical properties of the product may change when compared with conventional manufacturing methods such as injection and molding. This paper verifies the effect of the printing orientation on the mechanical properties of the product in the manufacture of PA12 material and providing basic data on the practical use of the materials as building subsidiary materials and structural materials. The results of the experiment showed that the product printed in the orientation of 0° showed the lowest overall strength and elongation rate, and the product printed in the orientation of 45° showed the highest figure. Overall, tensile strength and yield strength increased between 0° and 45°, and tended to decrease somewhat at 45° to 90°.

Characteristics of Degradation and Improvement of Properties with Conducting Polypyrrole (전도성 Polypyrrole의 분해 특성과 물성 개선)

  • Lee, Hong-Ki;Eom, Jung-Ho;Park, Soo-Gil;Shim, Mi-Ja;Kim, Sang-Wook;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.764-771
    • /
    • 1994
  • Electrochemical synthesis of conductive polypyrrole films was carried out in nucleophilic solvent containing p-toluenesulfonic acid or bezensulfonic acid as supporting electrolyte and dopant. Also characteristics of degradation and improvement of mechanical properties were studied. The conductivity, tensile strength and elongation of the films obtained in dimethyformamide/p-toluenesulfonic acid had the highest value of 10-40S/cm, $25N/mm^2$ and 10%, respectively. The optimum condition of electrochemical synthesis was $2mA/cm^2$ for constant current method and 0.9V for constant potential method containing 0.5M pyrrole and 0.5M p-TSA. The obtained films showed good stability in air and electrode characteristics of secondary battery by reversibility in doping and undoping. The degradation process was 1st order reaction at various temeprature. The activation energy and rate constant of degradation reaction were $1.01JK^{-1}mol^{-1}$ and $3.1{\times}10^{-7}min^{-1}$ respectively at $25^{\circ}C$. For the improvement of mechanical properties, composition of polypyrrole films with various host polymer were investigated and increase of tensile strength and elongation was confirmed.

  • PDF

Effect of Loading Rate on the Deformation Behavior of SA508 Gr.1a Low Alloy Steel and TP316 Stainless Steel Pipe Materials at RT and 316℃ (상온과 316℃에서 SA508 Gr.1a 저합금강 배관과 TP316 스테인리스강 배관의 변형거동에 미치는 하중속도의 영향)

  • Kim, Jin Weon;Choi, Myung Rak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.383-390
    • /
    • 2015
  • This study conducted tensile tests on SA508 Gr.1a low alloy steel and SA312 TP316 stainless steel piping materials under various strain rates at room temperature (RT) and $316^{\circ}C$ to investigate the effects of loading rate on the deformation behavior of nuclear piping materials. At RT, the deformation behavior for both pipe materials showed a typical loading rate dependence, i.e., the strength increased and the ductility decreased as the loading rate increased. At $316^{\circ}C$, however, the strength and elongation of SA508 Gr.1a low alloy steel decreased as the loading rate increased, and its reduction of area non-linearly varied with the loading rate. For SA312 TP316 stainless steel, the strength, elongation, and reduction of area at $316^{\circ}C$ were almost the same regardless of the loading rate. At both temperatures, the strain hardening capacity was nearly independent of the loading rate for SA508 Gr.1a low alloy steel, while it decreased with increasing loading rate for SA312 TP316 stainless steel.

Characterization of the PVDF Fibers Fabricated by Hybrid Wet Spinning (하이브리드 습식 공정을 통한 PVDF 섬유의 제조 및 특성에 관한 연구)

  • Jeong, Kun;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.145-150
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) as a representative polymer with the piezoelectric property has been studied since the 1960s. Crystalline structure of poly(vinylidene fluoride) polymer is composed of five different crystal structure of the polymer as a semi-crystalline. Among the various crystal structures, ${\beta}-type$ crystal exhibits a piezoelectricity because the permanent dipoles are aligned in one direction. Generally ${\beta}-form$ crystal structure can be obtained through the transformation of the ${\alpha}-form$ crystal structure by the stretching and it can increase the amount through the after treatment as poling process after stretching. ${\beta}-form$ crystal structure the PVDF fibers produced by wet spinning is formed through a diffusion mechanism of a polar solvent in the coagulation bath. However, it has a disadvantage that the diffusion path of the solvent remains as pores in the fiber because the fiber solidification occurs simultaneously with the diffusion of the polar solvent. These pores play a role in reducing effect of poling process owing to effect of disturbances acting on the polarization by the electric field. In this work, the drying method using the microwave was introduced to remove more effectively the residual solvent and the pore within PVDF fibers produced through wet-spinning process and piezoelectric PVDF fibers was produced by transformation of the remaining ${\alpha}$ form crystal structure into ${\beta}-crystal$ structure through the stretching process.

Study on Characteristics of PLA/PBAT Composite Film with Various Chain Extenders (고분자 사슬연장제를 이용한 폴리유산 / 폴리부틸렌 아디페이트테레프탈레이트 복합필름의 제조 및 특성 분석)

  • Kim, Sun-jong;Cho, Hyun-seung;Lee, Jae-hwan;You, Myung-je;Um, Yoo-Jun;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.2
    • /
    • pp.61-66
    • /
    • 2017
  • Poly lactic acid(PLA) and poly butylene adipate-co-terephthalate(PBAT) film was prepared using a twin extruder. PLA (25%) and PBAT (75%) were mixed with various ratio of chain extenders, such as $Joncryl^{(R)}$ and hexamethylene diisocyanate(HDI) to improve the mechanical and thermal properties of produced bio composite films. Tensile strengths of films were steadily increased with increasing ratio of chain extender. The tensile strength of control films was about 25 MPa, and the tensile strength of films with combined chain extenders was above 40 MPa. The films with $Joncryl^{(R)}$ resulted in improved tensile strength, while the film with HDI alone showed improved percent elongation at break. By adding chain extenders into PLA/PBAT resin, the cold crystallization temperature (Tcc) and decomposition temperature (Td) of the produced bio composite films increased. It revealed that the addition of two types of chain extenders was efficient way to get PLA/PBAT film with improved strength and elongation.

Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (열처리된 알루미늄 합금의 초음파 비선형 특성 평가)

  • Kim, JongBeom;Cheon, Chung;Jhang, Kyung-Young;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.193-197
    • /
    • 2013
  • In this study, ultrasonic nonlinear characteristics in the heat-treated aluminum alloy have been evaluated. The nonlinearity of ultrasonic wave has been measured as the acoustic nonlinear parameter ${\beta}$, depending upon the amplitude ratio of the second-order harmonic and the fundamental frequency component of ultrasonic wave propagating through the materials. The parameter ${\beta}$ measurement has been carried out with the reflected signals from the back-wall of specimens at the same plane using the contact-type transducers. The heat-treatment, aging, has been achieved at $300^{\circ}C$ for various durations in the range of 1 to 50 hours. The tensile strength and elongation are obtained by the tensile test and then compared with the parameter ${\beta}$. There is a peak of the acoustic nonlinear parameter ${\beta}$ on 5 hours aging and the ${\beta}$ decreases thereafter, exhibiting closed relations with tensile strength and elongation. Also, the heat-treatment time showing peak in the parameter ${\beta}$ was identical to that showing severe change in the ${\sigma}-{\varepsilon}$ curve. These results suggest that the acoustic nonlinear parameter ${\beta}$ can be used for monitoring the strength variations with aging of aluminum alloys.

Evaluation of High-Temperature Tensile Property of Diffusion Bond of Austenitic Alloys for S-CO2 Cycle Heat Exchangers (고온 S-CO2 사이클 열교환기용 스테인리스강 및 Fe-Cr-Ni 합금 확산 접합부의 고온 인장 특성평가)

  • Hong, Sunghoon;Sah, Injin;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1421-1426
    • /
    • 2014
  • To improve the inherent safety of the sodium-cooled fast reactor (SFR), the supercritical $CO_2$ ($S-CO_2$) Brayton cycle is being considered as an alternative power conversion system to steam the Rankine cycle. In the $S-CO_2$ system, a PCHE (printed circuit heat exchanger) is being considered. In this type of heat exchangers, diffusion bonding is used for joining the thin plates. In this study, the diffusion bonding characteristics of various austenitic alloys were evaluated. The tensile properties were measured at temperatures starting from the room temperature up to $650^{\circ}C$. For the 316H and 347H types of stainless steel, the tensile ductility was well maintained up to $550^{\circ}C$. However, the Incoloy 800HT showed lower strength and ductility at all temperatures. The microstructure near the bond line was examined to understand the reason for the loss of ductility at high temperatures.

Preparation and Characterization of Biomass-based Polymer Blend Films(2) (Biomass-based 고분자 블렌드 필름의 제조 및 특성 연구(2))

  • Lee, Soo;Park, Myung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.305-311
    • /
    • 2013
  • PLA(polylactic acid), one of biodegradable polymers was blended with various amounts of wood pulp powder through solution blending technic to verify the effect of reinforcing pulp amount on the mechanical properties of blend films. Also these blend films were further modified with TDI(toluene diisocyanate) as crosslinking agent to introduce urethane functions by reaction of pulp hydroxyl groups and isocyanate. As a result, the tensile strength of blend film with 0.25 wt% pulp was increased from $565.25kg_f/cm^2$ for PLA film itself to $624.20kg_f/cm^2$. However, elongation of this film was decreased by 50% of that of PLA film itself. Only PLA/pulp blend film further modified with 500% of TDI/0.25 wt% pulp showed the slightly increased tensile strength but decreased elongation. Melting point and glass transition temperature of PLA/pulp blend films were confirmed by using Differential Scanning Calorimeter(DSC). Thermal stability of these blend films measured by TGA showed only a slight increase at temperature lower than $300^{\circ}C$.

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.

Effects of recycling on the mechanical properties and the surface topography of Nickel-Titanium alloy wires (재생 과정이 니켈-티타늄 호선의 물리적 성질과 표면 거칠기에 미치는 영향)

  • Lee, Sung-Ho;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.453-465
    • /
    • 2000
  • The purpose of this study was to investigate the change of mechanical properties, surface topography and frictional force of various nickel titanium wires after recycling. Three types of nickel-titanium wires and one type of stainless steel wire were divided to three groups: as-received condition(T0:control group), treated in artificial saliva for four weeks(T1) and autoclaved after being treated in artificial saliva(T2). Some changes were observed for the selected mechanical properties in tensile test, surface topography by means of SEM and 3D profilogram, and frictional coefficient. The findings suggest that: 1. Nickel-titanium wires demonstrated no statistically significant differences in maximum tensile strength, elongation rate and modulus of elasticity, but stainless steel wire demonstrated statistically significant differences in maximum tensile strength, elongation rate and modulus of elasticity between the groups(p<0.05). 2. NiTi, Optimalloy, Stainless Steel wires demonstrated increased pitting and corrosion in SEM finding. 3. Recycled NiTi, Optimalloy and stainless steel wires demonstrated significantly greater surface roughness(Ra and Rq) through 3D profilogram when compared with the control wires(p<0.05), but Sentalloy didn't demonstrate significant difference. 4. Recycled NiTi, Optimalloy and stainless steel wires demonstrated significantly greater maximum frictional coefficient when compared with the control wires(p<0.05), but Sentalloy didn't demonstrate significant difference The changes of surface roughness and frictional coefficient in NiTi and Optimalloy had no clinical implication. Consequently recycled nickel titanium wires demonstrated no clinical problem in tensile properties, surface topography and frictional coefficient.

  • PDF