Kim, Sung-Ill;Lee, Sang-Hoon;Shin, Wee-Jae;Park, Nam-Chun
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.560-563
/
2004
본 논문은 분노, 행복, 평정, 슬픔, 놀람 둥과 같은 인간의 감정상태를 인식하는 새로운 접근에 대해 설명한다. 이러한 시도는 이산길이를 포함하는 연속 은닉 마르코프 모델(HMM)을 사용함으로써 이루어진다. 이를 위해, 우선 입력음성신호로부터 감정의 특징 파라메타를 정의 한다. 본 연구에서는 피치 신호, 에너지, 그리고 각각의 미분계수 등의 운율 파라메타를 사용하고, HMM으로 훈련과정을 거친다. 또한, 화자적응을 위해서 최대 사후확률(MAP) 추정에 기초한 감정 모델이 이용된다. 실험 결과, 음성에서의 감정 인식률은 적응 샘플수의 증가에 따라 점차적으로 증가함을 보여준다.
Proceedings of the Acoustical Society of Korea Conference
/
1995.06a
/
pp.175-178
/
1995
기존이 연속 출력 분포형 HMM은 시계열의 과도적 변화에 대하여 표현 능력이 부족하다는 단점이 있다. 이것을 보완하기 위해 본 논문에서는 음성의 동적 변화를 반영하기 위한 특징 파라메타로서 여러 개의 프레임을 결합하여 세그멘트를 구성하여 각각에 대해 한 개의 벡터를 만들었다. 이것을 그대로 이용하면 세그멘트의 프레임수에 대응하는 파라메타의 차원수가 증가하기 때문에 학습 데이터가 불충분한 경우 모델의 파라메타를 잘 추정할 수 없으므로 K-L 전개로서 파라메타의 차원을 압축하여 파라메타수를 감소시켰다. 인식실험은 한국어 단음절에 대하여 멜켑스트럼ㅇ르 K-L 전개로 압축한 벡터를 이용한 결과와 멜켑스트럼, 멜켑스트럼 선형회귀계수를 파라메타로 이용한 경우를 비교하였다. 실험결과 K-L 전개로 압축한 벡터만을 이용한 경우는 멜켑스트럼 + 선형회귀계수를 파라메타로 이용한 경우보다 인식율이 낮앗으나 멜켑스트럼 + K-L 전개로 압축한 경우와 거의 동등한 결과를 얻을 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.250-253
/
2013
최근 카메라 영상을 이용한 제스처 인식 관련 연구가 활발히 진행되고 있다. 카메라 영상을 이용한 제스처 인식에서 많이 사용되는 학습 알고리즘에는 확률 그래프 모델인 HMM과 CRF 등이 있다. 이 학습 알고리즘들은 다차원의 연속된 실수 데이터를 가지고 모델을 학습하면 계산량이 많아진다. 본 논문에서는 팔 관절 위치 데이터를 k-평균 군집화 과정을 거쳐 1차원의 시계열 데이터로 변환 후, 제스처별로 HMM 모델을 학습하는 방법을 제안한다. 키넥트 센서를 통해 얻은 팔 관절 위치 데이터에 k-평균 군집화를 적용하여 1차원 시계열 데이터를 생성하고, 이를 HMM의 학습 및 인식에 사용한다. 본 논문에서 제안하는 방법의 성능을 분석하기 위하여, 다른 시계열 학습 알고리즘인 AP+DTW를 이용한 방법과의 비교 실험을 포함해 다양한 실험들을 수행하였다.
Journal of the Institute of Convergence Signal Processing
/
v.3
no.3
/
pp.21-26
/
2002
This paper presents the new approach of identifying human emotional states such as anger, happiness, normal, sadness, or surprise. This is accomplished by using discrete duration continuous hidden Markov models(DDCHMM). For this, the emotional feature parameters are first defined from input speech signals. In this study, we used prosodic parameters such as pitch signals, energy, and their each derivative, which were then trained by HMM for recognition. Speaker adapted emotional models based on maximum a posteriori(MAP) estimation were also considered for speaker adaptation. As results, the simulation performance showed that the recognition rates of vocal emotion gradually increased with an increase of adaptation sample number.
Kim, Do-Yeong;Park, Yong-Kyu;Kwon, Oh-Wook;Un, Chong-Kwan
Annual Conference on Human and Language Technology
/
1993.10a
/
pp.101-110
/
1993
본 논문에서는 연속분포 hidden Markov 모델을 이용한 화자독립 연속 음성 인식 시스템에 관해 기술한다. 연속분포 모델은 평균과 분산 벡터로 구성되며 음성신호를 직접 모델링하여 양자화 왜곡이 없어진다. 특징벡터는 filter bank 계수 및 그 1, 2차 미분계수를 사용하여 음성신호의 동적 특성을 반영하였다. Segmental K-means 알고리즘을 이용하여 학습하였으며, 연속어 인식에서 가장 문제가 되는 조음화 현상으로 인한 인식률 저하를 막기 위해 앞뒤의 음소를 고려해 주는 triphone을 인식단위로 사용하였다. Search 알고리즘으로는 시간 면에서 효율이 좋은 one-pass search 알고리즘을 사용하였다. 성능 평가를 위한 화자 독립 인식 실험에서 문법이 없을 경우 83%, finite state network율 적용한 경우에는 94%의 인식률을 나타내었다.
Gaussian selection (GS) is a popular approach in the continuous density hidden Markov model for fast decoding. It enables fast likelihood computation by reducing the number of Gaussian components calculated. In this paper, we propose a new GS method for the phonetic tied-mixture (PTM) hidden Markov models. The PTM model can represent each state of the same topological location with a shared set of Gaussian mixture components and contort dependent weights. Thus the proposed method imposes constraint on the weights as well as the number of Gaussian components to reduce the computational load. Experimental results show that the proposed method reduces the percentage of Gaussian computation to 16.41%, compared with 20-30% for the conventional GS methods, with little degradation in recognition.
In this paper, we proposed a contents of Chinese characters learning based on gesture recognition using HMM(hidden markov model) algorithm. Input image of the system is obtained in 3-dimensional information from the TOF camera, and the method of gesture recognition is consisted of part of forecasting user's posture in two infrared images and part of recognizing gestures from continuous poses. In the communication between human and computer, this system provided convenience that user can manipulate it easily by not using any further equipment but action. Because this system raise immersion and interest by using two large display and various multimedia factor, it can maximize information transmission. The edutainment Chinese character contents proposed in this paper provide educational effect that use can master Chinese character naturally with interest, and it can be expected a synergy effect via content experience because it is based on gesture recognition.
The Transactions of the Korea Information Processing Society
/
v.6
no.8
/
pp.2262-2270
/
1999
In this paper, we describe gesture recognition algorithm using computer vision sensor and HMM. The automatic hand region extraction has been proposed for initializing the tracking of the tele-operation gestures. For this, distance informations(disparity map) as results of stereo matching of initial left and right images are employed to isolate the hand region from a scene. PDOE(positive difference of edges) feature images adapted here have been found to be robust against noise and background brightness. The KNU/KAERI(K/K) gesture instruction set is defined for tele-operation in atomic electric power stations. The composite recognition model constructed by concatenating three gesture instruction models including pre-orders, basic orders, and post-orders has been proposed and identified by discrete HMM. Our experimental results showed that consecutive orders composed of more than two ones are correctly recognized at the rate of above 97%.
Proceedings of the Acoustical Society of Korea Conference
/
1998.08a
/
pp.315-319
/
1998
대어휘 연속음성인식을 위한 확률 발음사전 모델에 대해서 제안하였다. 제안된 확률 발음 사전은 연속음성과 같은 자연스런 발성에서 자주 발생되는 단어의 변이를 확률적인 subword-state로 이루어진 HMM으로 모델화 함으로써 단어의 발음 변이를 효과적으로 표현할 수 있으며, 단위 인식 시스템의 성능을 보다 높일 수 있도록 구성되었다. 확률 발음사전의 생성은 음성 자료와 음소 모델을 이용하여 단어 단위의 분할과 학습을 통해서 자동으로 생성되게 됨 음소와 같은 언어학적인 단위뿐만 아니라 PLU 이나 비언어학적인 인식 모델을 이용한 연속음성인식기에도 적용이 가능하다.연속음성인식실험결과 확률 발음사전을 사용함으로써 표준 발음 표기를 사용하는 인식 시스템에 비해 단어 오류율은 39.8%, 문장 오류율은 24.4%의 큰 폭으로 오류율을 감소시킬 수 있었다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2001.06a
/
pp.277-280
/
2001
본 연구에서는 연속음성인식 시스템의 성능개선을 위한 기초 연구로서 음소결정트리 상태분할과 한국어 음성학적 지식을 이용하여 문맥의존 음향모델의 작성방법을 검토하고. 한국어 연속음성인식에 적용을 소개한다. 음소결정트리 상태분할 알고리즘은 각 노드에서 한국어 음성학적 지식으로 구성된 음소 질의어 집합에 따라 2진 트리로 SSS(Successive State Splitting) 알고리즘에 의해 상태분할 하는 방법으로서 상태분할 후 각 상태를 네트워크로 연결한 구조를 HM-Net(Hidden Markow Network)이라 하며 문맥의존 음향모델로 표현된다. 작성한 문맥의존 음향모델의 유효성을 확인하기 위해 본 연구실의 항공편 예약 문장(YNU200)에 대해 연속음성인식 실험을 수행하였다. 인식실험 결과, 문맥의존 음향모델에 대한 화자독립 연속음성인식률이 기존의 단일 HMM 모델보다 평균적으로 1-pass의 경우 9.9%, 2-pass의 경우 4.1% 향상된 인식률을 보였다. 따라서 문맥의존 음향모델을 작성하는데 음소결정트리 상태분할과 한국어 음성학적 지식이 유효함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.