• Title/Summary/Keyword: 연속 데이터 모델

Search Result 357, Processing Time 0.028 seconds

News Data Analysis Using Acoustic Model Output of Continuous Speech Recognition (연속음성인식의 음향모델 출력을 이용한 뉴스 데이터 분석)

  • Lee, Kyong-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.9-16
    • /
    • 2006
  • In this paper, the acoustic model output of CSR(Continuous Speech Recognition) was used to analyze news data News database used in this experiment was consisted of 2,093 articles. Due to the low efficiency of language model, conventional Korean CSR is not appropriate to the analysis of news data. This problem could be handled successfully by introducing post-processing work of recognition result of acoustic model. The acoustic model more robust than language model in Korean environment. The result of post-processing work was made into KIF(Keyword information file). When threshold of acoustic model's output level was 100, 86.9% of whole target morpheme was included in post-processing result. At the same condition, applying length information based normalization, 81.25% of whole target morpheme was recognized. The purpose of normalization was to compensate long-length morpheme. According to experiment result, 75.13% of whole target morpheme was recognized KIF(314MB) had been produced from original news data(5,040MB). The decrease rate of absolute information met was approximately 93.8%.

  • PDF

Continuous Multiple Prediction of Stream Data Based on Hierarchical Temporal Memory Network (계층형 시간적 메모리 네트워크를 기반으로 한 스트림 데이터의 연속 다중 예측)

  • Han, Chang-Yeong;Kim, Sung-Jin;Kang, Hyun-Syug
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • Stream data shows a sequence of values changing continuously over time. Due to the nature of stream data, its trend is continuously changing according to various time intervals. Therefore the prediction of stream data must be carried out simultaneously with respect to multiple intervals, i.e. Continuous Multiple Prediction(CMP). In this paper, we propose a Continuous Integrated Hierarchical Temporal Memory (CIHTM) network for CMP based on the Hierarchical Temporal Memory (HTM) model which is a neocortex leraning algorithm. To develop the CIHTM network, we created three kinds of new modules: Shift Vector Senor, Spatio-Temporal Classifier and Multiple Integrator. And also we developed learning and inferencing algorithm of CIHTM network.

Clustering Method for Classifying Signal Regions Based on Wi-Fi Fingerprint (Wi-Fi 핑거프린트 기반 신호 영역 구분을 위한 클러스터링 방법)

  • Yoon, Chang-Pyo;Yun, Dai Yeol;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.456-457
    • /
    • 2021
  • Recently, in order to more accurately provide indoor location-based services, technologies using Wi-Fi fingerprints and deep learning are being studied. Among the deep learning models, an RNN model that can store information from the past can store continuous movements in indoor positioning, thereby reducing positioning errors. When using an RNN model for indoor positioning, the collected training data must be continuous sequential data. However, the Wi-Fi fingerprint data collected to determine specific location information cannot be used as training data for an RNN model because only RSSI for a specific location is recorded. This paper proposes a region clustering technique for sequential input data generation of RNN models based on Wi-Fi fingerprint data.

  • PDF

Wi-Fi Fingerprint-based Indoor Movement Route Data Generation Method (Wi-Fi 핑거프린트 기반 실내 이동 경로 데이터 생성 방법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.458-459
    • /
    • 2021
  • Recently, researches using deep learning technology based on Wi-Fi fingerprints have been conducted for accurate services in indoor location-based services. Among the deep learning models, an RNN model that can store information from the past can store continuous movements in indoor positioning, thereby reducing positioning errors. At this time, continuous sequential data is required as training data. However, since Wi-Fi fingerprint data is generally managed only with signals for a specific location, it is inappropriate to use it as training data for an RNN model. This paper proposes a path generation method through prediction of a moving path based on Wi-Fi fingerprint data extended to region data through clustering to generate sequential input data of the RNN model.

  • PDF

Online Adaptation of Continuous Density Hidden Markov Models Based on Speaker Space Model Evolution (화자공간모델 진화에 근거한 연속밀도 은닉 마코프모델의 온라인 적응)

  • Kim Dong Kook;Kim Young Joon;Kim Hyun Woo;Kim Nam Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.69-72
    • /
    • 2002
  • 본 논문에서 화자공간모델 evolution에 기반한 continuous density hidden Markov model (CDHMM)의 online 적응에 대한 새로운 기법을 제안한다. 학습화자의 a priori knowledge을 나타내는 화자공간모델은 factor analysis (FA) 또는 probabilistic principal component analysis (PPCA)와 같은 은닉변수모델(latent variable model)에 의해 효과적으로 나타내어진다. 은닉 변수모델은 화자공간모델뿐아니라 CDHMM 파라메터의 ajoint prior분포를 표시함으로, maximum a posteriori(MAP)적응기법에 직접 적용되어진다. 화자공간모델의 hyperparameters와 CDHMM파라메터를 동시에 순차적으로 적응하기 위해 quasi-Bayes (QB)추정 기술에 기반한 online 적응기법을 제안한다. 연속숫자음 인식과 관련된 화자적응 실험을 통해 제안된 기법은 적은 적응데이터에서 좋은 성능을 나타내며, 데이터가 증가함에 따라 성능이 지속적으로 증가함을 보여준다.

  • PDF

3D Reconstruction from an Image Sequence (연속적인 이미지를 이용한 3차원 물체의 복원)

  • 김성진;김강현;전희성
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.487-490
    • /
    • 2002
  • 이미지를 기반으로 3차원 모델을 생성하기 위한 방법은 많은 사람들의 연구의 대상이 되어 왔다. 본 연구에서는 연속적으로 획득된 여러 장의 이미지로부터 특징점을 추출한 후, 사영복원과 유클리디언 복원을 이용하여 특징점에 대응되는 3차원 데이터를 계산하는 방법을 구현하였고, 이렇게 얻은 3차원 데이터에 텍스쳐 매핑을 결합하여, 보다 사실적인 3차원 모델을 생성할 수 있는 시스템을 구현하였다.

  • PDF

Impact of Data Continuity in EEG Signal-based BCI Research (뇌파 신호 기반 BCI 연구에서 데이터 연속성의 영향)

  • Youn-Sang Kim;Ju-Hyuck Han;Woong-Sik Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • This study conducted a comparative experiment on the continuity of time series data and the classification performance of artificial intelligence models. In BCI research using EEG signals, the performance of behavior and thought classification improved as the continuity of the data decreased. In particular, LSTM achieved a high performance of 0.8728 on data with low continuity, and DNN showed a performance of 0.9178 when continuity was not considered. This suggests that data without continuity may perform better. Additionally, data without continuity showed better performance in task classification. These results suggest that BCI research based on EEG signals can perform better by showing various data characteristics through shuffling rather than considering data continuity.

UFID-based Spatial Data Model for Digital Map (UFID기반의 수치지도 공간 데이터 모델)

  • Kim, Hyeongsoo;Kim, Sang Yeob;Lee, Yang Koo;Lee, Jong Woo;Park, Chung;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.401-402
    • /
    • 2009
  • 정보화 기술의 발전과 더불어 GIS의 대중화에 따라, 다양한 형태와 주제로 공간 정보를 제공하는 수치지도의 수요가 증가하고 있다. 기존의 수치지도 데이터는 도엽 단위로 관리하기 때문에 관리 및 갱신을 효율적으로 지원하기 어렵다. 이 논문에서는 이러한 문제를 해결하기 위해 객체의 연속적인 표현, 객체 단위의 갱신 및 이력관리가 가능한 UFID기반의 수치지도 데이터 모델을 제안하였다. 제안한 모델은 각 지형지물에 새로운 UFID를 부여하여 연속적인 지형지물 표현과 갱신으로 인한 지형지물별 이력 관리가 가능하도록 하였다. 마지막으로 제안된 모델의 효율성을 검증하기 위하여 타당성을 분석하였다.

Spatial Data Modeling for Feature-based Efficient Updating and History Management (객체기반의 효율적인 갱신 및 이력 관리를 위한 공간 데이터 모델 설계)

  • Sang Yeob Kim;Hyeongsoo Kim;Sungbo Seo;Keun Ho Ryu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.352-355
    • /
    • 2008
  • 최근 센서와 모바일 기술의 발달에 따라 대용량 데이터 처리가 가능해지고, 유비쿼터스와 텔레매틱스 등의 도입으로 공간 데이터가 다양한 환경에 응용되거나 활용 분야가 점차 증가하고 있다. 기존의 수치지도 관리시스템은 공간 데이터를 도엽 단위로 관리하여 데이터의 구축이 용이하지만, 객체 단위의 데이터 구축, 관리, 제공 및 갱신을 효율적으로 지원하기 어렵다. 따라서 이 논문에서는 기존 도엽기반 시스템의 문제점을 해결하기위해 객체기반 UFID 부여방안, 연속성 표현, 객체 단위의 효율적인 갱신 및 이력관리를 위한 객체기반 공간 데이터 모델을 설계한다. 제안하는 객체기반의 공간 데이터 모델은 지형지물에 UFID를 부여하고 도엽 단위로 구축된 수치지도 데이터의 조인 연산을 통해 연속적인 표현이 가능하다. 아울러 갱신으로 인해 변경된 데이터를 이력 DB에 시간간격 단위로 저장, 관리하여 사용자에게 객체단위 이력 정보를 제공할 수 있다.

분별학습에 기반한 전화 숫자음 음성인식

  • Han, Mun-Seong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.7-17
    • /
    • 2001
  • 음성인식 시스템이 있어서 현재 가장 널리 사용되고 있는 Hidden Markov Model(HMM)은 확률 모델을 기반한 것으로 데이터에 대한 통계처리를 학습과정으로 하고 있다. 한국어 연속 숫자음에 대한 음성인식은 고립 숫자음 인식과는 달리 충분한 학습데이터만으로는 만족할 만한 결과를 가져오지 못한다. 이 논문에서는 연속 숫자음 음성인식에 잇어서 비슷하게 발음되는 숫자음과 같은 숫자에 대해 다양하게 발음되는 숫자음에 대해 HMM의 한계를 제시하고 그 해결채으로 Discriminant 학습의 적용방법을 제시한다. 연속 숫자음의 인식 시스템을 구현하는 데 있어서 인식률 낮은 부분에 Discriminant 학습을 적용하여 인식률을 대폭 향상시킨 실험결과를 제시한다.

  • PDF