• Title/Summary/Keyword: 연속웨이브렛

Search Result 20, Processing Time 0.027 seconds

Characteristic of Inverse wavelet transform and Multi bank system (연속 웨이브렛 역변환의 특성 및 멀티 뱅크 시스템)

  • Kim Tae-hyung;Yoon Dong-han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.229-236
    • /
    • 2005
  • This paper is contribute to Inverse continuous wavelets transform(ICWT) which permits to determine real 'time-scale' plan. The application of ICWT is not yet represented because of the numerical difficulty. If the signal can be reconstructed stably by ICWT, the multi scale filter bank system which composed by analysis and synthesis process can be designed. In this work, we represent the ICWT which leads to nearly perfect reconstruction of signal and the multi-scale filter bank system.

Modeling of the Time-frequency Auditory Perception Characteristics Using Continuous Wavelet Transform (연속 웨이브렛 변환을 이용한 청각계의 시간-주파수 인지 특성 모델링)

  • 이상권;박기성;서진성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.81-87
    • /
    • 2001
  • The human auditory system is appropriate for the "constant Q"system. The STFT (Short Time Fourier Transform) is not suitable for the auditory perception model since it has constant bandwidth. In this paper, the CWT (continuous wavelet transform) is employed for the auditory filter model. In the CWT, the frequency resolution can be adjusted for auditory sensation models. The proposed CWT is applied to the modeling of the JNVF. In addition, other signal processing methods such as STFT, VER-FFT and VFR-STFT are discussed. Among these methods, the model of JNVF (Just Noticeable Variation in Frequency) by using the CWT fits in with the JNVF of auditory model although it requires quite a long time.

  • PDF

Analysis of Ringing by Continuous Wavelet (연속 웨이브렛에 의한 Ringing현상 해석)

  • 권순홍;이형석;하문근
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.118-122
    • /
    • 2000
  • In this study, Ringing is investigated by continuous wavelet transform. Ringing is considered to be one of the typical transient phenomena in the field of ocean engineering. The wavelet analysis is adopted to analyze ringing from the point that wavelet analysis is capable of frequency analysis as well as time domain analysis. The use mother wavelet is the Morlet wavelet. The relation between the frequency of the time series and that of wavelet can be clearly defined with Mor1et wavelet. Experimental data obtained by other researchers was used. The wave height time series and acceleration times series of the surface piercing cylinder were analyzed. The results show that the proposed scheme can detect typical frequency region by the time domain analysis which could hardly be detected if one relied on the frequency analysis.

  • PDF

Wavelet Generation and It's Application in Gravity Potential (중력 포텐셜에서의 웨이브렛 생성과 응용)

  • Kim, Sam-Tai;Jin, Hong-Sung;Rim, Hyoung-Rae
    • Journal of the Korean earth science society
    • /
    • v.25 no.2
    • /
    • pp.109-114
    • /
    • 2004
  • A wavelet method is applied to the analysis of gravity potential. One scaling function is proposed to generate wavelet. The scaling function is shown to be replaced to the Green’s function in gravity potential. The upward continuation can be expressed as a wavelet transform i.e. convolution with the scaling function. The scaling factor indicates the height variation. The multiscale edge detection is carried by connecting the local maxima of the wavelet transform at scales. The multiscale edge represents discontinuity of the geological structure. The multiscale edge method is applied to gravity data from Masan and Changwon.

Detection of Chatter using Wavelet Transform (웨이브렛 변환을 이용한 채터 검출)

  • Oh, Sang-Lok;Chin, Do-Hum;Yoon, Moon-Chul;Ryoo, In-Ill;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.32-38
    • /
    • 2004
  • The chatter behaviour in endmilling is a complex and nonlinear phenomenon, so it is very difficult to detect and diagnose this chatter phenomenon, This paper presents new method for the detection of chatter in endmilling operation based on the wavelet transform. In this paper, the fundamental property of the wavelet transform is reviewed by comparing the spectrum of other algorithm such as FFT. This result using wavelet transform shows the possibiling of the chatter detection in endmilling operation.

  • PDF

Determination of Instantaneous Frequency By Continuous Wavelets Ridge (연속 웨이브렛 Ridge를 이용한 순간주파수 결정)

  • Kim, Tae-Hyung;Yoon, Dong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • The analysis of Rader signal that have non-linearity variable phase is signal that contact easily in several fields such as radar, telecommunication, seismic, sonar and biomedical applications. In generally, Non-stationary signal means that spectral characteristics are varying with time and instantaneous frequency is only one frequency or narrow range of frequencies varying as a function of time. Therefore, Instantaneous frequency is vary important variable that understanding physical characteristic of signal. This paper was describes continuous wavelet transform to determine instantaneous frequency at non-staionary signal and compare to existing method. When white noise or various frequency is overlapped each other in sign, existing method was can not decide corrected instantaneous frequency, but when used continuous wavelet transform, very well decide correctly frequency regardless of component of signal.

A Study on the Wavelets on Irregular Point Set (불규칙 점 집합에서의 웨이브렛에 관한 연구)

  • Inn-Ho Jee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.69-74
    • /
    • 2023
  • In this paper we review techniques for building and analyzing wavelets on irregular point sets in one and two dimensions. In particular we focus on subdivision schemes and commutation. Subdivision means the skill that approximates the initial lines or mesh into a tender curve or a curved surface by continuous partitioning operation. The key to generalizing wavelet constructions to non-traditional settings is the use of generalized subdivision. The first generation setting is already connected with subdivision schemes, but they become even more important in the construction of second generation wavelets. Subdivision schemes provide fast algorithms, create a natural multi-resolution structure, and yield the underlying scaling functions and wavelets we seek.

Noise Reduction using Spectral Subtraction in the Discrete Wavelet Transform Domain (이산 웨이브렛 변환영역에서의 스펙트럼 차감법을 이용한 잡음제거)

  • 김현기;이상운;홍재근
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.4
    • /
    • pp.306-315
    • /
    • 2001
  • In noise reduction method from noisy speech for speech recognition in noisy environments, conventional spectral subtraction method has a disadvantage which distinction of noise and speech is difficult, and characteristic of noise can't be estimated accurately. Also, noise reduction method in the wavelet transform domain has a disadvantage which loss of signal is generated in the high frequency domain. In order to compensate theme disadvantage, this paper propose spectral subtraction method in continuous wavelet transform domain which speech and non- speech intervals is distinguished by standard deviation of wavelet coefficient, and signal is divided three scales at different scale. The proposed method extract accurately characteristic of noise in order to apply spectral subtraction method by end detection and band division. The proposed method shows better performance than noise reduction method using conventional spectral subtraction and wavelet transform from viewpoint signal to noise ratio and Itakura-Saito distance by experimental.

  • PDF

Fourier and Wavelet Analysis for Detection of Sleep Stage EEG (수면단계 뇌파 검출을 위한 Fourier 와 Wavelet해석)

  • Seo Hee-Don;Kim Min-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.487-494
    • /
    • 2003
  • The sleep stages provides the most basic evidence for diagnosing a variety of sleep diseases. for staging sleep by analysis of EEG(electroencephalogram), it is especially important to detect the characteristic waveforms from EEG. In this paper, sleep EEG signals were analyzed using Fourier transform and continuous wavelet transform as well as discrete wavelet transform. Proposeed system methods. Fourier and wavelet for detecting of important characteristic waves(hump, sleep spindles. K-complex, hill wave, ripple wave) in sleep EEG. Sleep EEG data were analysed using Daubechies wavelet transform method and FFT method. As a result of simulation, we suggest that our neural network system attain high performance in classification of characteristic waves.

CWT-Based Method for Identifying the Location of the Impact Source in Buried Pipes (연속웨이브렛 변환을 이용한 충격음 위치 규명)

  • Kim, Eui-Youl;Kim, Min-Su;Lee, Sang-Kwon;Koh, Jae-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1555-1565
    • /
    • 2010
  • This paper presents a new method for indentifying the location of impact source in a buried duct. In a gas pipeline, the problem of leakage occurs due to the mechanical load exerted by construction equipment. Such leakage can cause catastrophic disasters in gas supply industries. Generally, the cross-correlation method has been used for indentifying the location of impact source in a pipeline. Since this method involves the use of the dispersive acoustic wave, it derives an amount of error in process of estimating the time delay between acoustic sensors. The object of this paper is to estimate the time delay in the arrival of the direct wave by using the wavelet transform instead of the dispersive wave. The wavelet transform based method gives more accurate estimates of the impact location than the cross-correlation method does. This method is successfully used to identify the location of impact force in an actual buried gas duct.