• Title/Summary/Keyword: 연속열역학

Search Result 35, Processing Time 0.026 seconds

Desulfurization Reaction according to Ladle Slag Recycling Method in Shaft-Type EAF Operation (Shaft형 전기로 공정에서 ladle 슬래그 재활용 방법에 따른 탈황반응)

  • Jung-Min Yoo
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.46-53
    • /
    • 2024
  • The residual heat and high CaO content present in the slag remaining in the ladle after the completion of continuous casting in the electric arc furnace (EAF) steelmaking process have been utilized to reduce power consumption and lime usage in the ladle furnace (LF) process. However, if the timing of such processes does not align with the LF and continuous casting operations, the recycling rate will decrease. To increase the slag recycling rate, the effect of ladle slag recycling methods, specifically pouring ladle slag into the slag pot in advance for subsequent recycling, on LF operations was analyzed. The slag liquefaction rate was calculated using the thermodynamic program Factsage 8.3 for ladle molten slag recycling methods. By applying each of the 10 heats operations for the ladle slag recycling methods, the desulfurization ability and LF operation performance were compared. It was found that when slag was immediately recycled into the ladle after continuous casting was completed, power consumption decreased by 0.3 MWh, LF operation time was shortened by 1.2 minutes, and the desulfurization rate increased by 5.8%.

Investigation of Convective Heat Transfer Characteristics of Aqueous SiO2 Nanofluids under Laminar Flow Conditions (층류유동 조건에서 SiO2 나노유체의 대류 열전달 특성에 대한 연구)

  • Park, Hyun-Ah;Park, Ji-Hyun;Jeong, Rag-Gyo;Kang, Seok-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.1-11
    • /
    • 2016
  • The effect of the migration of nanoparticles near the wall of a channel on the convective heat transfer in a laminar flow of $SiO_2$ nanoparticle suspensions (nanofluids) under constant wall heat flux boundary conditions was numerically and experimentally investigated in this study. The dynamic thermal conductivity of the aqueous $SiO_2$ nanofluids was measured using T-type thermocouples attached to the outer surface of a stainless steel circular tube (with a length of 1 m and diameter of 1.75 mm). The nanofluids used in this study were synthesized by dispersing $SiO_2$ spherical nanoparticles with a diameter of 24 nm in de-ionized water (DIW). The enhancement of the thermal conductivity of the nanofluids (e.g., an increase of up to 7.9 %) was demonstrated by comparing the temperature profiles in the flow of the nanofluids with that in the flow of the basefluids (i.e., DIW). However, this trend was not demonstrated in the computational analysis, because the numerical models were based on continuum assumptions and flow features involving nanoparticles in a stable colloidal solution. Thus, to explore the non-continuum effects, such as the modification of the morphology caused by nanoparticle-wall interactions on the heat exchanging surfaces (e.g., the isolated and dispersed precipitation of the nanoparticles), additional experiments were performed using DIW right after the measurements using the nanofluids.

A Study on the Sequential Multiscale Homogenization Method to Predict the Thermal Conductivity of Polymer Nanocomposites with Kapitza Thermal Resistance (Kapitza 열저항이 존재하는 나노복합재의 열전도 특성 예측을 위한 순차적 멀티스케일 균질화 해석기법에 관한 연구)

  • Shin, Hyunseong;Yang, Seunghwa;Yu, Suyoung;Chang, Seongmin;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • In this study, a sequential multiscale homogenization method to characterize the effective thermal conductivity of nano particulate polymer nanocomposites is proposed through a molecular dynamics(MD) simulations and a finite element-based homogenization method. The thermal conductivity of the nanocomposites embedding different-sized nanoparticles at a fixed volume fraction of 5.8% are obtained from MD simulations. Due to the Kapitza thermal resistance, the thermal conductivity of the nanocomposites decreases as the size of the embedded nanoparticle decreases. In order to describe the nanoparticle size effect using the homogenization method with accuracy, the Kapitza interface in which the temperature discontinuity condition appears and the effective interphase zone formed by highly densified matrix polymer are modeled as independent phases that constitutes the nanocomposites microstructure, thus, the overall nanocomposites domain is modeled as a four-phase structure consists of the nanoparticle, Kapitza interface, effective interphase, and polymer matrix. The thermal conductivity of the effective interphase is inversely predicted from the thermal conductivity of the nanocomposites through the multiscale homogenization method, then, exponentially fitted to a function of the particle radius. Using the multiscale homogenization method, the thermal conductivities of the nanocomposites at various particle radii and volume fractions are obtained, and parametric studies are conducted to examine the effect of the effective interphase on the overall thermal conductivity of the nanocomposites.

Numerical Analysis for the Characteristic Investigation of Homogenization Techniques Used for Equivalent Material Properties of Functionally Graded Material (기능경사 소재 등가 물성치 예측을 위한 균질화 기법의 특성분석을 위한 수치해석)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Shin, Dae-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Graded layers in which two different constituent particles are mixed are inserted into functionally graded material such that the volume fractions of constituent particles vary continuously and functionally over the entire material domain. The material properties of this dual-phase graded region, which is essential for the numerical analysis of the thermo-mechanical behavior of FGM, have been predicted by traditional homogenization methods. But, these methods are limited to predict the global equivalent material properties of FGMs because the detailed geometry information such as the particel shape and the dispersion structure is not considered. In this context, this study intends to investigate the characteristics of these homogenization methods through the finite element analysis utilizing the discrete micromechanics models of the graded layer, for various volume fractions and external loading conditions.

Elasto-Plastic Anisotropic-Damage Model for Concrete (콘크리트의 탄-소성 이방성-손상 모델)

  • 이기성;송하원
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • The initiation and growth of microcracks or microvoids inside concrete results in the progressive degradation of concrete. This damage processing along processing along with plastic deformation is main cause of nonlinear behavior of concrete. In this study, a continuum damage model of concrete is developed for the analysis of the nonlinear behavior of concrete due to damage and elasto-plastic deformation. Anisotropic damage tensor is used to describe the anisotropy of concrete and hypothesis of equivalent elastic energy is used to define the effective elastic tensor. The damage model including the damage evolution law and constitutive equation is derived with damage variable and damage surface which is defined by damage energy release rate by using the Helmholtz free energy and dissipation potential based on the thermodynamic principles. By adopting a typical plasticity model of concrete, plasticity of concrete is included to this model. Afinite element analysis program implemented with this model was developed and finite element analysis was performed for the analyses of concrete subjected to uniaxial and biaxial loadings. Comparison of the results of analysis with those of experiments and other models shows that the model successfully predicts the nonlinear behavior of concrete.

  • PDF

A Systolic Array for Ordinary Differential Equations (상미분 방정식을 위한 시스토릭어레이)

  • 박덕원
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.66-72
    • /
    • 2003
  • An ordinary differential equation in analytical numerics is utilized to some applications, for example, physics, mechanical engineering, electrical engineering, thermodynamics and etc. But this equation has problems a lots to process in the real time processing by software method. This paper is proposed a systolic Arrays architecture for solving the Runge-Kutta method. it is one of method for solving an ordinary differential equation. the proposed its architecture is very high speed and regular. this hardware proposed in this paper may be part of the mathematical problem solver's tool kit in the future and may be available to many applications in the engineering.

  • PDF

A Comparison with CFD Simulation and Experiment for Steam-methane Reforming Reaction in Double pipe Continuous Reactor (이중관형 연속 반응기에서 수증기-메탄 개질반응의 실험 및 CFD 시뮬레이션)

  • Shin, Dong-Woo;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.226-236
    • /
    • 2013
  • The heat distribution and internal flow from the efficiency of actual reformer and specification variation, using the computer simulation and experiment about the steam methane reforming reaction which uses the high temperature reformer. Reaction model from steam refoemer uses the steam response model developed by Xu & Froment.As result we supposed the chemical react Steam Reforming(SR), Water Gas Shift(WGS), and Direct Steam Reforming(DSR) from the inner high temperature reformer dominates the response has dissimilar response. According to result of steam methane reforming reaction exam using high temperature reformer, we figured out when Steam Carbon Ratio(SCR) increase, number of hydrogen yield increases but methane decreases. When comparing and examining between design with one inlet and two inlet, result came out one inlet design is more outstanding at thermal distribution and internal flow, hydrogen yield in one inlet design than two inlet design.

Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 이용한 암석 균열의 수리역학 거동해석: 국제공동연구 DECOVALEX-2023 Task G (Benchmark Simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.270-288
    • /
    • 2021
  • We proposed a numerical method to simulate the hydro-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) in the paper. As a part of DECOVALEX-2023 Task G, we verified the method via benchmarks with analytical solutions. DECOVALEX-2023 Task G aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as a group of tetrahedral grains and calculated the interaction of the grains and their interfaces using 3DEC. The micro-parameters of the grains and interfaces were determined by a new methodology based on an equivalent continuum approach. In benchmark modeling, a single fracture embedded in the rock was examined for the effects of fracture inclination and roughness, the boundary stress condition and the applied pressure. The simulation results showed that the developed numerical model reasonably reproduced the fracture slip induced by boundary stress condition, the fracture opening induced by fluid injection, the stress distribution variation with fracture inclination, and the fracture roughness effect. In addition, the fracture displacements associated with the opening and slip showed good agreement with the analytical solutions. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Propagation Behavior of Inclined Surface Crack of Semi-Infinite Elastic Body under Hertzian Contact (반무한 탄성체의 헤르츠 접촉하의 경사진 표면균열의 전파거동)

  • 김재호;김석삼;박중한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.624-635
    • /
    • 1990
  • Analytical study based on linear fracture mechanics was conducted on propagation behavior of inclined surface crack in semi-infinite elastic body. The analytical model was assumed to be inclined surface crack under plane strain condition upon which Hertzian stress was superimposed. Supposing continuous distribution of dislocation and applying Erdogan-Gupta's method to this crack problem, the stress intensity factors $K_{I}$ and $K_{II}$) at the crack-tip were obtained for various Hertzian contact positions. Analytic results have shown that driving force for crack growth is $K_{I}$ for non-lubricated condition and $K_{II}$ for fluid and boundary lubricated condition. The coefficient of friction at the hertzian contact and crack surfaces plays an important role in predicting the direction of crack propagation. It is also found that the maximum effective stress intensity factor exists at cracks of a certain specific length depending on lubricated condition.ion.n.

Building Wind Corridor Network Using Roughness Length (거칠기길이를 이용한 바람통로 네트워크 구축)

  • An, Seung Man;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.101-113
    • /
    • 2015
  • The purpose of this study is increasing ventilation network usability for urban green space planning by enhancing its practicality and detail. A ventilation network feature extraction technique using roughness length($z_0$) was proposed. Continuously surfaced DZoMs generated from $z_0$(cadastral unit) using three interpolations(IDW, Spline, and Kriging) were compared to choose the most suitable interpolation method. Ventilation network features were extracted using the most suitable interpolation technique and studied with land cover and land surface temperature by spatial overlay comparison. Results show Kriging is most suitable for DZoM and feature extraction in comparison with IDW and Spline. Kriging based features are well fit to the land surface temperature(Landsat-7 ETM+) on summer and winter nights. Noteworthy is that the produced ventilation network appears to mitigate urban heat loads at night. The practical use of proposed ventilation network features are highly expected for urban green space planning, though strict validation and enhancement should follow. (1) $z_0$ enhancement, (2) additional ventilation network interpretation and editing, (3) linking disconnected ventilation network features, and (4) associated dataset enhancement with data integrity should technically preceded to enhance the applicability of a ventilation network for green space planning. The study domain will be expanded to the Seoul metropolitan area to apply the proposed ventilation network to green space planning practice.