• Title/Summary/Keyword: 연속랜덤과정

Search Result 11, Processing Time 0.015 seconds

Bilayer Segmentation of Consistent Scene Images by Propagation of Multi-level Cues with Adaptive Confidence (다중 단계 신호의 적응적 전파를 통한 동일 장면 영상의 이원 영역화)

  • Lee, Soo-Chahn;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.450-462
    • /
    • 2009
  • So far, many methods for segmenting single images or video have been proposed, but few methods have dealt with multiple images with analogous content. These images, which we term consistent scene images, include concurrent images of a scene and gathered images of a similar foreground, and may be collectively utilized to describe a scene or as input images for multi-view stereo. In this paper, we present a method to segment these images with minimum user input, specifically, manual segmentation of one image, by iteratively propagating information via multi-level cues with adaptive confidence depending on the nature of the images. Propagated cues are used as the bases to compute multi-level potentials in an MRF framework, and segmentation is done by energy minimization. Both cues and potentials are classified as low-, mid-, and high- levels based on whether they pertain to pixels, patches, and shapes. A major aspect of our approach is utilizing mid-level cues to compute low- and mid- level potentials, and high-level cues to compute low-, mid-, and high- level potentials, thereby making use of inherent information. Through this process, the proposed method attempts to maximize the amount of both extracted and utilized information in order to maximize the consistency of the segmentation. We demonstrate the effectiveness of the proposed method on several sets of consistent scene images and provide a comparison with results based only on mid-level cues [1].