• Title/Summary/Keyword: 연소 실험

Search Result 1,890, Processing Time 0.032 seconds

Analysis of High Radioactive Materials in Irradiated DUPIC SIMFUEL Using EPMA (EPMA를 이용한 DUPIC 사용후 핵연료 핵분열 생성물의 특성 분석)

  • 정양홍;유병옥;주용선;이종원;정인하;김명한
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.125-133
    • /
    • 2004
  • Fission products of DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) fuel, irradiated in HANARO research reactor with 61 ㎾/m of maximum linear power and 1,770 ㎿d/tU of average burn-up, was characterized by EPMA(Electron Probe Micro Analyzer). In order to find accurate characterization, the analysis results by EPMA of fresh simulated DUPIC fuel containing fission products as chemicals were compared with that of wet chemical analysis. The metallic precipitates observed at the center of the fresh simulated DUPIC fuel were about 1 $\mu\textrm{m}$ in size and their major components by EPMA were Mo-53.89 at.%, Ru-37.40 at.%, and Pd+Rh-8.71 at.%. Established procedure through the fresh simulated DUPIC fuel was applied to the irradiated DUPIC fuel. Observed size of metallic precipitates were 2∼2.5 $\mu\textrm{m}$ and their compositions were Mo-47.34 at.%, Ru-46 at.%, and Pd+Rh-6.65 at.%. What are uncommon things for this experiment, special treatment for improving the conductivity was attempted to the specimen and the conditions of exact irradiation of electron beam to small metallic precipitate were suggested.

  • PDF

A Level-set Parameterization for Any 3D Complex Interface Related to a Fire Spread in Building Structures (복잡한 CAD 형상의 매개변수화를 통한 3차원 경계면 레벨-셋 알고리즘 개발 및 적용)

  • Kim, Hyun-Jun;Cho, Soo-Yeong;Lee, Young-hun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • To define an interface in a conventional level-set method, an analytical function must be revealed for an interfacial geometry. However, it is not always possible to define a functional form of level sets when interfaces become complex in a Cartesian coordinate system. To overcome this difficulty, we have developed a new level-set formalism that discriminates the interior from the exterior of a CAD modeled interface by parameterizing the stereolithography (STL) file format. The work outlined here confirms the accuracy and scalability of the hydrodynamic reactive solver that utilizes the new level set concept through a series of tests. In particular, the complex interaction between shock and geometrical confinements towards deflagration-to-detonation transition is numerically investigated. Also, a process of flame spreading and damages caused by point source detonation in a real-sized plant facility have been simulated to confirm the validity of the new method built for reactive hydrodynamic simulation in any complex three-dimensional geometries.

Effect of fuel component on nitrous oxide emission characteristics in diesel engine (디젤엔진에 있어서 연료의 성분이 아산화질소 배출에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1045-1050
    • /
    • 2014
  • $N_2O$(Nitrous Oxide) is known as the third major GHG(Green House Gas) following $CO_2$(Carbon Oxide) and $CH_4$(Methane). The GWP(Global Warming Potential) factor of $N_2O$ is 310 times as large as that of $CO_2$ because $N_2O$ in the atmosphere is very stable, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. Investigation on the cause of the $N_2O$ formation have been continuously reported by several researchers on power sources with continuous combustion form, such as a boiler. However, in the diesel engine, research on $N_2O$ generation which has effected from fuel components has not been conducted. Therefore, in this research, author has investigated about $N_2O$ emission rates which was changed by nitrogen and sulfur concentration in fuel on the diesel engine. The test engine was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition of that was set up at a 75% load. Nitrogen and sulfur concentrations in fuel were raised by using six additives : nitrogen additives were Pyridine, Indole, Quinoline, Pyrrol and Propionitrile and sulfur additive was Di-tert-butyl-disulfide. In conclusion, diesel fuels containing nitrogen elements less than 0.5% did not affect $N_2O$ emissions in the all concentrations and kinds of the additive agent in the fuel. However, increasing of the sulfur additive in fuel increased $N_2O$ emission in exhaust gas.

Particle Characteristics of Flame-Synthesized γ-Al2O3 Nanoparticles (화염법으로 제조된 감마-Al2O3 나노입자의 화염조건에 따른 입자특성 연구)

  • Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.509-515
    • /
    • 2012
  • In this study, ${\gamma}-Al_2O_3$ nanoparticles were synthesized by using coflow hydrogen diffusion flames. The synthesis conditions were varied with using several oxygen concentrations in the oxidizing air. The particle characteristics of the flame-synthesized $Al_2O_3$ nanoparticles were determined by examining the crystalline structure, shape, and specific surface area of the nanoparticles. The measured maximum centerline temperature of the flames ranged from 1507.8 K to 1998.7 K. The morphology and crystal structure of the $Al_2O_3$ nanoparticles were determined from SEM images and XRD analyses, respectively. The particle sizes were calculated from measured BET specific surface areas and ranged from 25 nm to 52 nm. From XRD analyses, it was inferred that a large number of the synthesized nanoparticles were ${\gamma}-Al_2O_3$ nanoparticles including ${\theta}-Al_2O_3$ nanoparticles.

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite (일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석)

  • Shin, Jung Hun;Sa, Jeong Hwan;Kim, Han Gi;Cho, Keum Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.361-366
    • /
    • 2017
  • As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

The Study on the Countermeasure Plans about Leakage, Explosion and Fire Accidents of Atmospheric Storage Tank (옥외저장탱크 누출, 폭발 및 화재사고 대응방안에 관한 고찰)

  • Lee, Gab-Kyoo
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.48-56
    • /
    • 2016
  • A crude oil leakage from a large atmospheric storage tank occurred on 4 April 2014 at 14:50 in Ulsan City, while storing the crude oil in the tank. Emergency Rescue Control Group was deployed in the scene. The company, Fire Service Headquarters and associated agencies got together in Command Post (CP) for discussing an effective corresponding strategy. Many solution plans were drafted in the debate such as power down, stopping the facilities, checking the density of inflammable gas, suppressing oil evaporation, moving the leaked crude oil to a nearby tank and a processing plant and avoiding marine pollution. All the solutions were carried out in cooperation with several agencies and partners. The oil leakage accident was successfully settled up within the process of responding, The Fire Service Headquarters and the company thought that the most important thing was the suppression of oil evaporation and the elimination of ignition source. With Fire Service Headquarters and several agencies' every effort, an explosion and a fire didn't occurred in the scene. This study suggest the improvement of the operating system in Emergency Rescue Control Group in case of petroleum leakage, explosion and fire accidents of atmospheric storage tank, different from a ordinary disaster. Assuming that petroleum leakage in atmospheric storage tank develop the explosion and fire accidents, the spreading speed of the flame and the burning time was experimented and compared with each other. Furthermore, this study concentrates on the effective field response plan prepared for the afterward explosion and fire accidents from petroleum leak in a storage tank, with the database experimented and analyzed in accordance with the angle of radiation in the foam nozzle and the pressure of pumping in a fire engine.

A study on an instantaneous angular velocity and torque fluctuation for marine diesel engine (선박용 디젤 기관의 순간 각속도와 토크 변동에 관한 연구)

  • Jung, Gyun-sik;Lee, Ji-woong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.722-728
    • /
    • 2015
  • The demand for shipboard energy management is expected to gradually increase based on ship energy efficiency management plans (SEEMPs), which have been in use since January 1, 2013. Therefore, the fuel consumption of the main engine, which occupies the greatest portion of the energy used, along with elements related to the engine power, should be strictly monitored. There are many different methods for indicating the engine power. However, this study performed an experiment to monitor the status of a ship's engine power in real time using an encoder and a proximate switch, which are economical to purchase and easy to install. In the experiment, the angular velocity during one cycle of a two-stroke low-speed engine was measured, and the measured data were converted to the torque fluctuation. The angular velocity during an abnormal firing condition in the cylinder was also measured, and the torque fluctuation as a result of a misfire was considered. The results were compared with sea trial data to determine the reliability. In this study, the status of the engine power was determined using the torque fluctuation of the main engine in an operating ship.

Fabrication of Electrospun PAN/FA Nanocomposites and Their Adsorption Effects for Reducing Volatile Organic Compounds (전기방사에 의한 PAN/FA 나노 복합재의 제조 및 휘발성 유기 화합물에 대한 흡착효과)

  • Ge, Jun Cong;Wang, Zi Jian;Yoon, Sam Ki;Choi, Nag Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.702-708
    • /
    • 2018
  • Volatile organic compounds (VOCs), as a significant air pollutant, is generated mainly from the burning of fossil fuels, building materials using painting, etc. The inhalation of a certain amount of VOCs can be deleterious to human health, e.g., headaches, nausea and vomiting. In addition, it can also cause memory loss and even increase the rate of leukemia. Therefore, as one of the methods for reducing VOCs in air, polyacrylonitrile/fly ash (PAN/FA) composite nanofibrous membranes were fabricated by electrospinning. To observe their VOCs adsorption capacity, the morphological structure of PAN/FA nanofibrous mats was investigated by field emission scanning electron microscopy (FE-SEM), and the VOCs (chloroform, benzene, toluene, and xylene) adsorption capacity of PAN/FA membranes were tested by gas chromatography/mass spectrometry (GC/MS). The results indicated that the PAN nanofiber containing 40 wt. % FA powder had the smallest fiber diameter of 283 nm; they also showed the highest VOCs adsorption capacity compared to other composite membranes.

Experimental study of NOx reduction in marine diesel engines by using wet-type exhaust gas cleaning system (선박용 디젤엔진의 NOx를 저감하기 위한 습식 배기가스 처리기술 적용에 관한 실험적 연구)

  • Ryu, Younghyun;Kim, Taewoo;Kim, Jungsik;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.216-221
    • /
    • 2017
  • Diesel engines have the highest brake thermal efficiency among internal combustion engines. Therefore, they are utilized in medium and large transportation vehicles requiring large amounts of power such as heavy trucks, ships, power generation systems, etc. However, diesel engines have a disadvantage of generating large quantities of nitrogen oxides during the combustion process. Therefore, the authors tried to reduce the amount of nitrogen oxides in marine diesel engines using a wet-type exhaust gas cleaning system utilizing the undivided electrolyzed seawater method. In this method, electrolyzed seawater in injected into the harmful gas discharge from the diesel engine using real seawater. The authors investigated the reduction of NO and NOx from the pH value, available chlorine concentration, and the temperature of electrolyzed seawater. The results of this experiment indicated that when the electrolyzed seawater is acidic, the NO oxidation rate in the oxidation tower is higher than that when the electrolyzed seawater has a neutral pH. Likewise, the NO oxidation rate increased with the increase in concentration of chlorine. Further, it was confirmed that the electrolyzed seawater temperature had no effect on the NO oxidation rate. Thus, the NOx exhaust emission value produced by the diesel engine was reduced by means of electrolyzed seawater treatment.

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.