• Title/Summary/Keyword: 연소 배출물

Search Result 221, Processing Time 0.026 seconds

Understanding Pollutant Emission in a Heavy-Duty Diesel Engine with JP-8 and Diesel (대형 디젤 엔진에서 JP-8 과 디젤 적용 시의 배기 배출물 특성에 대한 이해)

  • Lee, Jin-Woo;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1375-1381
    • /
    • 2011
  • Combustion processes in an optically-accessible single-cylinder heavy-duty diesel engine equipped with a highpressure common-rail injection system were investigated for JP-8 and diesel. Direct imaging and two-color thermometry were employed to verify the emission trend for both fuels. The combustion process was characterized by image analysis with focus on luminosity. The results of two-color thermometry were analyzed on the basis of the flame temperature and KL factor distribution. Analysis of the combustion process by direct imaging showed that the ignition delay was longer for JP-8 than for diesel, while the flame was extinguished rapidly. Analysis of the flame luminosity showed that the combustion intensity was higher for diesel and that the flame lasted for a longer duration in this case. Two-color thermometry results showed that the high-temperature region extended over a large area during JP-8 combustion, implying the formation of a large amount of $NO_x$. In addition, the KL factor showed low level over a large area and relatively homogeneous in the case of JP-8 combustion, which implied that less smoke was produced when using this fuel.

Numerical analysis on performances and emission characteristics of HCCI engine fueled with hydrogen added biogas (반응 메커니즘 기반의 수소 첨가 바이오가스 HCCI 엔진 성능 및 배출가스에 대한 수치 해석적 연구)

  • Park, Jungsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.41-46
    • /
    • 2018
  • In this research, numerical analysis was performed to determine the effects of hydrogen on biogas combustion for homogeneous charged compression ignition (HCCI) engines. The target engine specifications were a 2300cc displacement volume, 13:1 compression ratio, 15kW of electricity, and 1.2 bar boost pressure. The engine speed was fixed to 1800rpm. By varying the excess air ratio and hydrogen contents, the cylinder pressure, nitric oxide, and carbon dioxide were measured as a function of the hydrogen contents. According to preliminary studies related to the reaction mechanism for methane combustion and oxidation, a GRI 3.0 mechanism as the base mechanism was selected for HCCI combustion calculations describing the detailed reaction mechanism. By adding hydrogen, NO was increased while $CO_2$ was decreased. The cylinder pressure was also increased, having advanced timing for the maximum cylinder pressure and pressure rise region. Furthermore, lean operation limits were extended by adding hydrogen to the HCCI engine.

가스발생기 뒷마개부의 열/구조 해석

  • 구송희;이방업;조원만
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.265-272
    • /
    • 1996
  • 액츄에이터에 사용되는 터어보 펌프의 터어빈을 구동시키기 위한 가스발생기용 고체연료 추진기관의 뒷마개부에 대하여 열/구조 해석을 수행하였다. 가스발생기는 장시간 연소모타로써 뒷마개에는 단열이 되어 있지 않은 배출튜브가 나사로 체결되어 고온, 고압의 연소가스에 의해 뒷마개 구조물에 작용하는 열 하중이 상당히 클 것으로 판단되므로, 최적설계를 위하여 뒷마개부의 열 및 구조해석을 수행하여 열하중의 영향을 예측하고 경량화를 위한 설계자료를 얻고자 하였다. 본 논문에서는 해석결과만을 언급하였으며 차후에 수행될 지상시험시에 해석치와 실험치를 비교한 후 좀 더 정확히 모델링을 하여 열/구조 해석 결과를 뒷마개부의 최적설계에 활용하고자 한다. 해석 결과 열하중이 연소관과의 조립부에는 거의 영향을 주지 않았으나, 열과 압력하중이 동시에 작용할 경우에 뒷마개 배출튜브의 조립부 근접한 곳에서 항복응력을 넘는 응력이 발생하여 정확한 구조 해석을 위해서는 탄소성해석을 수행하여야 할 것으로 판단된다.

  • PDF

A Study on Combustion and Characteristics of Exhaust Gas Properties for Combustion Chamber (연소실 형상에 따른 연소 및 배기가스 배출물 특성에 관한 연구)

  • 김대열;한영출;주신혁;박병완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.66-73
    • /
    • 2004
  • This paper presents characteristics of combustion and exhaust gas properties according to variation of the combustion chamber for economy and emissions standards. In order to use combustion and exhaust gas properties data, it is necessary to build some data base, which use cylinder pressure sensor and emission tester. A feasibility and necessity of combustion pressure based cylinder spark timing control has been examined. So, this was obtained the coefficient of variation(COV) and the specific fuel consumption(sfc). Using the results of the test, the effects of the variable combustion chamber can be improved combustion stability and be reduced exhaust emission.

A Simulation Method for Predicting the Performance and the NOx Level of Gas Turbine System (가스터빈 시스템의 성능 및 NOx 배출 예측을 위한 모사방법)

  • Lee, Han-Goo;Kang, Seung-Jong;Lee, Chan
    • Journal of Energy Engineering
    • /
    • v.3 no.1
    • /
    • pp.28-35
    • /
    • 1994
  • 가스터빈 사이클의 성능 및 NOx 배출물 생성량 예측을 위한 모사 프로그램을 개발하였다. 압축기 및 터빈은 등엔트로피 과정으로, 연소기는 Thermal NOx 생성을 수반하는 연소모형으로서 가정하였다. 또한 터빈 냉각을 위한 추출공기량과 냉각방식이 성능에 미치는 적절한 상관 관계식을 도입하여 평가하였다. 본 성능평가 모델을 이용하여 예측된 결과와 실험결과간의 비교를 통하여 모델의 타당성을 검증하였고, 증기 분사량, 터빈 냉각변수 및 압축비 변화에 따른 예측결과를 통하여 가스터빈 시스템 최적 운전 및 설계기준을 제시하였다.

  • PDF

Emission studies of a dual swirl burner in the region of lean equivalence ratios (희박한 당량비 구간에서 이중 선회버너의 배출특성 연구)

  • Park, Taejoon;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.111-112
    • /
    • 2013
  • An experimental study of a dual swirl burner was conducted to analyze NOx emission in the lean conditions. The dual swirl burner is composed of a combination of swirling jet premixed(main section) and diffusion flames(pilot section). It was operated with a co-swirling configuration and overall equivalence ratios between 0.6 and 0.8. The purpose of this study is to analyze experimentally the characterization of flame temperature and NOx concentration in reacting zone and to supply the useful experimental data for numerical simulations. The measurements of temperature and NOx concentration were captured using a thin digitally-compensated thermocouple and a sampling quartz probe with quenching effect of sudden expansion, and were measured by the NOx analyzer of chemiluminescence method. We could analyse the NOx emission characteristics comparing the temperature distributions in the lean equivalence ratios.

  • PDF

Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Oxygenated Blending Fuel (압축착화 엔진에서 함산소 혼합연료의 연소 및 미세입자 배출물 특성)

  • Cha, June-Pyo;Yoon, Seung-Hyun;Chon, Moo-Soo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.61-66
    • /
    • 2009
  • An experimental investigation was conducted to analyze the effects of biodiesel-ethanol and biodiesel-diesel blended fuels on the characteristics of combustion and exhaust emissions, and size distributions of particulate matter in a single cylinder diesel engine. The three types of test fuel were biodiesel and two blended fuels which were added ethanol and diesel by 20 % volume based fraction into biodiesel, respectively. In this study, the injection rate, combustion pressure, exhaust emissions and size distributions of particulate matter were measured under various injection timings and injection pressures. The experimental results show that biodiesel-ethanol blended fuel has lengthened ignition delay and low combustion pressure in comparison with those of biodiesel and biodiesel-diesel blended fuel even if all fuels indicated similar trends of injection rate under equal injection pressures. In addition, the ethanol blended fuel significantly reduced nitrogen oxidies (NOx) and soot emissions. And then the size distribution of particulate matters shows that blended fuels restrain the formation of particles which were beyond the range of 150nm comparison with biodiesel fuel.

Effect of temperature in the distribution of production by catalytic decomposition on the carbon based catalyst (탄소계 촉매상에서 부탄 분해에 따른 생성물 분포에 미치는 온도의 영향)

  • Yoon, Suk-Hoon;Han, Gi-Bo;Park, No-Kuk;Ryu, Si-Ok;Lee, Tae-Jin;Yoon, Ki-June;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.89-92
    • /
    • 2006
  • 수소에너지는 화석연료 사용의 증가로 인한 환경오염 및 자원고갈의 문제점을 해결해 줄 수 있는 미래의 청정한 에너지이다. 현재 주 에너지원인 화석연료의 사용에 의하여 배출된 오염물질이 지구온난화와 같은 문제점들을 일으킨다. 이러한 문제점들을 없애줄 수 있는 대안 중 하나가 수소에너지이다. 수소에너지는 자원이 풍부하며 연소시에 오염물질이 배출되지 않는 장점이 있다. 수소에너지는 수소를 연소시켜서 얻는 에너지로써, 수소를 태우면 같은 무게의 가솔린 보다 3배나 많은 에너지를 방출한다. 수소를 생산하는 방법 중 가장 이상적인 방법은 물을 분해하는 방법이다. 그러나 이 방법은 수소를 대량으로 생산하기에는 아직 기술에 대한 확보가 되어있질 않으며, 경제성도 떨어진다는 단점이 있다. 현재 많이 쓰이는 방법 중 탄화수소류의 메탄을 수증기 개질하는 방법이 있다. 메탄 수증기 개질방법은 환경오염물질인 CO나 $CO_2$를 배출한다는 것과 높은 열원이 필요하다 본 연구에서는 C-H결합에너지가 낮아 메탄보다 분해하기 쉬운 부탄의 직접분해로 수소를 생산하고자 한다. 부탄 직접분해는 환경오염물질인 CO나 $CO_2$가 발생되지 않는 장점이 있다. 부탄 분해반응은 $500{\sim}1100^{\circ}C$의 범위에서 이루어 졌으며, 촉매는 탄소계인 카본블랙을 사용하였고, 촉매의 성능을 비교하기 위하여 열분해반응이 동시에 수행되었다.

  • PDF

Emission characteristics of diesel engine by mixing LPG (디젤기관의 LPG 혼합에 의한 오염배출물 저감특성)

  • 장영준;전충환;이춘우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.44-52
    • /
    • 1993
  • In this study, the characteristics of decreasing exhaust gas of diesel engine was examined in dual fuel method by using commertial LPG for automotive. LPG was supplied to engine intake port by fumigation method and flow rate was controlled by using the needle valve. LPG supply ratios were 0, 20, 30% of total fuel amount to be supplied to engine by mass base. We investigated the effect of LPG supply ratio on exhaust gas concentrations related to excess air ratio and engine load at 1600, 1800, 2000 rpm. Soot concentration decreased about 30% in proportion to the increase of the LPG supply ratio. NOx concentration decreased in proportion to the increase of the LPG than diesel only and the increase rate was higher at low engine load. BSFC(Brake specific fuel consumption) was lower in proportion to the increase of the LPG supply ratio at high engine load and to the decrease of LPG supply ratio at low engine load.

  • PDF

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.